Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector (original) (raw)

References

  1. Rubin, G.M. & Spradling, A.C. Genetic transformation of Drosophila with transposable element vectors. Science 218, 348–353 (1982).
    Article CAS Google Scholar
  2. O'Brochta, D.A. & Atkinson, P.W. Transposable elements and gene transformation in non-drosophilid insects. Insect Biochem. Mol. Biol. 26, 739–753 (1996).
    Article CAS Google Scholar
  3. Loukeris, T.G., Livadaras, I., Arca, B., Zabalou, S. & Savakis, C. Gene transfer into the medfly, Ceratitis capitata , with a Drosophila hydei transposable element. Science 270, 2002–2005 ( 1995).
    Article CAS Google Scholar
  4. Handler, A.M., MacCombs, S.D., Fraser, M.J. & Saul, S.H. The lepidopteran transposon vector, piggyBac, mediates germ-line transformation in the mediterranean fruit fly. Proc. Natl. Acad. Sci. USA. 95, 7520–7525 (1998).
    Article CAS Google Scholar
  5. Coates, C.J., Jasinskiene, N., Miyashiro, L. & James, A.A. Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc. Natl. Acad. Sci. USA 95, 3748– 3751 (1998).
    Article CAS Google Scholar
  6. Jasinskiene, N. et al. Stable transformation of the yellow fever mosquito Aedes aegypti, with the hermes element from the housefly. Proc. Natl. Acad. Sci. USA 95, 3743– 3747 (1998).
    Article CAS Google Scholar
  7. Lozovskaya, E.R., Nurminsky, D.I., Hartl, D.L. & Sullivan, D.T. Germline transformation of Drosophila virilis mediated by the transposable element hobo. Genetics 142, 173– 177 (1995).
    Google Scholar
  8. Lohe, A.R. & Hartl, D.L. Germline transformation of Drosophila virilis with the transposable element mariner. Genetics 143, 365–374 ( 1996).
    CAS PubMed PubMed Central Google Scholar
  9. Gomez, S.P. & Handler, A.M. A Drosophila melanogaster hobo-white (+) vector mediates low frequency gene transfer in D. virilis with full interspecific white (+) complementation. Insect Mol. Biol. 6, 165–171 ( 1997).
    Article CAS Google Scholar
  10. Nagaraju, J., Klymenko, V. & Couble, P. In Encyclopedia of genetics (ed. Reeves, E.) (Fitzroy Dearborn, London, UK; In press).
  11. Yamao, M. et al. Gene targeting in the silkworm by use of a baculovirus. Genes Dev. 13, 511–516 ( 1999).
    Article CAS Google Scholar
  12. Cary, L.C. et al. Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172, 156– 69 (1989).
    Article CAS Google Scholar
  13. Wang, H.H. & Fraser, M.J. TTAA serves as the target site for the TFP3 lepidopteran transposon insertions in both nuclear polyhedrosis virus and Trichoplusia ni genomes. Insect Mol Biol. 1, 109–116 ( 1993).
    Article CAS Google Scholar
  14. Robertson, H.M. & Asplund, M.L. Bmmar1: a basal lineage of the mariner family of transposable elements in the silkworm moth Bombyx mori. Insect Biochem. Mol. Biol. 26, 945–954 (1996).
    Article CAS Google Scholar
  15. Mounier, N. & Prudhomme, J.C. Differential expression of muscle and cytoplasmic actin genes during development of Bombyx mori. Insect Biochem. 21, 523–533 (1991).
    Article CAS Google Scholar
  16. Mangé, A., Julien, E., Prudhomme, J.C. & Couble, P. A strong inhibitory element down-regulates SRE-stimulated transcription of the A3 cytoplasmic actin gene of Bombyx mori. J. Mol. Biol . 265, 266–274 ( 1997).
    Article Google Scholar
  17. Kanda, T. & Tamura, T. Microinjection system into the early embryo of the silkworm, Bombyx mori, by using air pressure. Bulliten of the National Institute of Sericultural and Entomological Science 2, 32–46 (1991 ).
    Google Scholar

Download references