Lindemann, B. Receptor seeks ligand: on the way to cloning the molecular receptors for sweet and bitter taste. Nat. Med.5, 381– 382 (1999). ArticleCAS Google Scholar
McLaughlin, S. K., McKinnon, P. J. & Margolskee, R. F. Gustducin is a taste-cell-specific G protein closely related to the transducins. Nature357, 563–569 (1992). ArticleCAS Google Scholar
McLaughlin, S. K., McKinnon, P. J., Spickofsky, N., Danho, W. & Margolskee, R. F. Molecular cloning of G proteins and phosphodiesterases from rat taste cells. Physiol. Behav.56, 1157–1164 (1994). ArticleCAS Google Scholar
Kusakabe, Y., Abe, K., Tanemura, K., Emori, Y. & Arai, S. GUST27 and closely related G-protein-coupled receptors are localized in taste buds together with Gi-protein α-subunit. Chem. Senses21, 335–340 ( 1996). ArticleCAS Google Scholar
Kusakabe, Y. et al. Identification of two alpha-subunit species of GTP-binding proteins, Ga15 and Gaq, expressed in rat taste buds. Biochim. Biophys. Acta1403, 265–272 ( 1998). ArticleCAS Google Scholar
Huang, L. et al. Gγ13 colocalizes with gustducin in taste receptor cells and mediates IP3 responses to bitter denatonium. Nat. Neurosci.2, 1055–1062 ( 1999). ArticleCAS Google Scholar
Misaka, T. et al. Taste buds have a cyclic nucleotide-activated channel, CNGgust . J. Biol. Chem.272, 22623– 22629 (1997). ArticleCAS Google Scholar
Kretz, O., Barbry, P., Bock, R. & Lindemann, B. Differential expression of RNA and protein of the three pore-forming subunits of the amiloride-sensitive epithelial sodium channel in taste buds of the rat. J. Histochem. Cytochem.47, 51–64 ( 1999). ArticleCAS Google Scholar
Lin, W., Finger, T. E., Rossier, B. C. & Kinnamon, S. C. Epithelial Na+ channel subunits in rat taste cells: localization and regulation by aldosterone. J. Comp. Neurol.405 , 406–420 (1999). ArticleCAS Google Scholar
Ogawa, S. et al. Receptor that leaves a sour taste in the mouth. Nature395, 555–556 ( 1998). Article Google Scholar
Ming, D., Ruiz-Avila, L. & Margolskee, R. F. Characterization and solubilization of bitter-responsive receptors that couple to gustducin. Proc. Natl. Acad. Sci. USA95, 8933–8938 ( 1998). ArticleCAS Google Scholar
Matsuoka, I., Mori, T., Aoki, J., Sato, T. & Kurihara, K. Identification of novel members of G-protein coupled receptor superfamily expressed in bovine taste tissue. Biochem. Biophys. Res. Commun.194, 504–511 (1993). ArticleCAS Google Scholar
Abe, K., Kusakabe, Y., Tanemura, K., Emori, Y. & Arai, S. Primary structure and cell-type specific expression of a gustatory G protein-coupled receptor related to olfactory receptors. J. Biol. Chem.268, 12033– 12039 (1993). CASPubMed Google Scholar
Hoon, M. A. et al. Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. Cell96 , 541–551 (1999). ArticleCAS Google Scholar
Faurion, A. Are umami taste receptor sites structurally related to glutamate CNS receptor sites? Physiol. Behav.49, 905– 912 (1991). ArticleCAS Google Scholar
Chaudhari, N. et al. The taste of monosodium glutamate: Membrane receptors in taste buds. J. Neurosci.16, 3817– 3826 (1996). ArticleCAS Google Scholar
Hayashi, Y., Zviman, M. M., Brand, J. G., Teeter, J. H. & Restrepo, D. Measurement of membrane potential and [Ca2+]i in cell ensembles: Application to the study of glutamate taste in mice. Biophys. J.71, 1057–1070 (1996). ArticleCAS Google Scholar
Conn, P. J. & Pin, J. P. Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol.37, 205–237 (1997). ArticleCAS Google Scholar
Chaudhari, N. & Roper, S. D. Molecular and physiological evidence for glutamate (umami) taste transduction via a G protein-coupled receptor . Ann. NY Acad. Sci.855, 398– 406 (1998). ArticleCAS Google Scholar
Yang, H., Wanner, I. B., Roper, S. D. & Chaudhari, N. An optimized method for in situ hybridization with signal amplification that allows the detection of rare mRNAs. J. Histochem. Cytochem.47 431–446 ( 1999). ArticleCAS Google Scholar
Kurihara, K. & Kashiwayanagi, M. Introductory remarks on umami taste. Ann. NY Acad. Sci.855, 393– 397 (1998). ArticleCAS Google Scholar
Sako, N. & Yamamoto, T. Analyses of taste nerve responses with special reference to possible receptor mechanisms of umami taste in the rat. Neurosci. Lett.261, 109– 112 (1999). ArticleCAS Google Scholar
Delay, E. R. et al. Taste preference synergism between glutamate receptor ligands and IMP in rats. Chem. Senses (in press).
Lin, W. & Kinnamon, S.C. Physiological evidence for ionotropic and metabotropic glutamate receptors in rat taste cells. J. Neurophysiol.82, 2061–2069 ( 1999). ArticleCAS Google Scholar
Ninomiya, Y., Tanikukai, T., Yoshida, S., Funakoshi, M. & Tanimukai, T. Gustatory neural responses in preweanling mice. Physiol. Behav.49, 913 –918 (1991). ArticleCAS Google Scholar
Yamamoto, T. et al. Electrophysiological and behavioural studies on the taste of umami substances in the rat. Physiol. Behav.49, 919–925 (1991). ArticleCAS Google Scholar
Monastyrskaia, K. et al. Effect of the umami peptides on the ligand binding and function of rat mGlu4a receptor might implicate this receptor in the monosodium glutamate taste transduction. Br. J. Pharmacol.128 , 1027–1034 (1999). ArticleCAS Google Scholar
O'Hara, P. J. et al. The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron11, 41–52 (1993). ArticleCAS Google Scholar
Han, G. & Hampson, D. R. Ligand binding to the amino-terminal domain of the mGluR4 subtype of metabotropic glutamate receptor. J. Biol. Chem.274, 10008–10013 (1999). ArticleCAS Google Scholar
Takahashi, K., Tsuchida, K., Tanabe, Y., Masu, M. & Nakanishi, S. Role of the large extracellular domain of metabotropic glutamate receptors in agonist selectivity determination. J. Biol. Chem.268, 19341–19345 ( 1993). CASPubMed Google Scholar
Thomsen, C. et al. Cloning and characterization of a metabotropic glutamate receptor, mGluR4b. Neuropharmacology36, 21– 30 (1997). ArticleCAS Google Scholar
Tanabe, Y., Masu, M., Ishii, T., Shigemoto, R. & Nakanishi, S. A family of metabotropic glutamate receptors. Neuron8, 169–179 ( 1992). ArticleCAS Google Scholar
Bradley, S. R., Levey, A. I., Hersch, S. M. & Conn, P. J. Immunocytochemical localization of group III metabotropic glutamate receptors in the hippocampus with subtype-specific antibodies. J. Neurosci.16, 2044–2056 ( 1996). ArticleCAS Google Scholar
Tanabe, Y. et al. Signal transduction, pharmacological properties and expression patterns of two rat metabotropic glutamate receptors, mGluR3 and mGluR4. J. Neurosci.13, 1372–1378 (1993). ArticleCAS Google Scholar
Hettinger, T. P., Frank, M. E. & Myers, W. E. Are the tastes of polycose and monosodium glutamate unique? Chem. Senses21, 341– 347 (1996). ArticleCAS Google Scholar
Rifkin, B. & Bartoshuk, L.M. Taste synergism between monosodium glutamate and disodium 5′-guanylate. Physiol. Behav.24, 1169–1172 (1980). ArticleCAS Google Scholar
Torii, K. & Cagan, R. H. Biochemical studies of taste sensation. IX. Enhancement of L-[3H]glutamate binding to bovine taste papillae by 5′-ribonucleotides. Biochim. Biophys. Acta627, 313–323 (1980). ArticleCAS Google Scholar
Caicedo, A., Kim, K. & Roper, S. Glutamate-induced cobalt uptake reveals non-NMDA receptors in rat taste cells . J. Comp. Neurol. (in press).
Bigiani, A., Delay, R. J., Chaudhari, N., Kinnamon, S. C. & Roper, S. D. Responses to glutamate in rat taste cells. J. Neurophysiol.77, 3048– 3059 (1997). ArticleCAS Google Scholar
Pin, J. P. & Duvoisin, R. The metabotropic glutamate receptors: structure and functions. Neuropharmacology34, 1–26 (1995). ArticleCAS Google Scholar
Pin, J.-P., Waeber, C., Prezeau, L., Bockaert, J. & Heinemann, S. F. Alternative splicing generates metabotropic glutamate receptors inducing different patterns of calcium release in Xenopus oocytes. Proc. Natl. Acad. Sci. USA89, 10331–10335 (1992). ArticleCAS Google Scholar
Yamaguchi, S. & Nakanishi, S. Regional expression and regulation of alternative forms of mRNAs derived from two distinct transcription initiation sites of the rat mGluR5 gene. J. Neurochem.71, 60–68 (1998). ArticleCAS Google Scholar
Frohman, M. A., Dush, M. K. & Martin, G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc. Natl. Acad. Sci. USA85, 8998– 9002 (1988). ArticleCAS Google Scholar
Towbin, H., Staehelin, T. & Bordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA76, 4350– 4354 (1979). ArticleCAS Google Scholar