The cell cycle inhibitor p21 controls T-cell proliferation and sex-linked lupus development (original) (raw)

References

  1. Sherr, C.J. & Roberts, J.M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–12 (1999).
    Article CAS Google Scholar
  2. Li, R., Waga, S., Hannon, G.J., Beach, D. & Stillman, B. Differential effects by the p21 CDK inhibitor on PCNA-dependent DNA replication and repair. Nature 371, 534–537 (1994).
    Article CAS Google Scholar
  3. Cheng, M. et al. The p21(Cip1) and p27(Kip1) CDK ‘inhibitors’ are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J. 18, 1571–1583 (1999).
    Article CAS Google Scholar
  4. Coats, S. et al. A new pathway for mitogen-dependent cdk2 regulation uncovered in p27(Kip1)-deficient cells. Curr. Biol. 9, 163–173 (1999).
    Article CAS Google Scholar
  5. El-Deiry, W.S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).
    Article CAS Google Scholar
  6. Deng, C., Zhang, P., Harper, J.W., Elledge, S.J. & Leder, P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82, 675–684 (1995).
    Article CAS Google Scholar
  7. Wang, Y.A., Elson, A. & Leder, P. Loss of p21 increases sensitivity to ionizing radiation and delays the onset of lymphoma in atm-deficient mice. Proc. Natl. Acad. Sci. USA 94, 14590–14595 (1997).
    Article CAS Google Scholar
  8. Brugarolas, J. et al. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377, 552–557 (1995).
    Article CAS Google Scholar
  9. Nourse, J. et al. Interleukin-2-mediated elimination of the p27Kip1 cyclin-dependent kinase inhibitor prevented by rapamycin. Nature. 372, 570–573 (1994).
    Article CAS Google Scholar
  10. Sabzevari, H., Propp, S., Kono, D.H. & Theofilopoulos, A.N. G1 arrest and high expression of cyclin kinase and apoptosis inhibitors in accumulated activated/memory phenotype CD4+ cells of older lupus mice. Eur. J. Immunol. 27, 1901–1910 (1997).
    Article CAS Google Scholar
  11. Dutton, R.W., Bradley, L.M. & Swain, S.L. T cell memory. Annu. Rev. Immunol. 16, 201–223 (1998).
    Article CAS Google Scholar
  12. London, C. A., Pérez, V.L. & Abbas, A.K. Functional characteristics and survival requirements of memory CD4+ T lymphocytes in vivo. J. Immunol. 162, 766–773 (1999).
    CAS PubMed Google Scholar
  13. Takahashi, S. et al. Imbalance towards Th1 predominance is associated with acceleration of lupus-like autoimmune syndrome in MRL mice. J. Clin. Invest. 97, 1597–1604 (1996).
    Article CAS Google Scholar
  14. Pape, K.A. et al. Use of adoptive transfer of T-cell-antigen-receptor-transgenic T cells for the study of T-cell activation in vivo. Immunol. Rev. 156, 67–78 (1997).
    Article CAS Google Scholar
  15. Ohashi, P.S. & Sarvetnick, N. Autoimmunity: a bias from tolerance to immunity. Curr. Opin. Immunol. 8, 815–817 (1997).
    Article Google Scholar
  16. Casciola-Rosen, L.A., Anhalt, G. & Rosen, A. Autoantigens targeted in systemic lupus are clustered in two populations of surface structures on apoptotic keratinocytes. J. Exp. Med. 179, 1317–1330 (1994).
    Article CAS Google Scholar
  17. Ophascharoensuk, V., Fero, M.J., Hughes, J., Roberts, J.M. & Shankland, S.J. The cyclin-dependent kinase inhibitor p27Kip1 safeguards against inflammatory injury. Nature Med. 4, 575–580 (1998).
    Article CAS Google Scholar
  18. Megyesi, J., Safirstein, R.L. & Price, P.M. Induction of p21WAF1/CIP1/SDI1 in kidney tubule cells affects the course of cisplatin-induced acute renal failure. J. Clin. Invest. 101, 777–782 (1998).
    Article CAS Google Scholar
  19. Kim, Y.G. et al. The cyclin kinase inhibitor p21CIP1/WAF1 limits glomerular epithelial cell proliferation in experimental glomerulonephritis. Kidney Int. 55, 2349–2361 (1999).
    Article CAS Google Scholar
  20. Botto, M. et al. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat. Genet. 19, 56–59 (1998).
    Article CAS Google Scholar
  21. Bickerstaff, M.C. et al. Serum amyloid P component controls chromatin degradation and prevents antinuclear autoimmunity. Nat. Med. 5, 694–697 (1999).
    Article CAS Google Scholar
  22. Paul, E. & Carroll, M.C. SAP-less chromatin triggers systemic lupus erythematosus. Nat. Med. 5, 607–608 (1999).
    Article CAS Google Scholar
  23. Theofilopoulos, A.N. & Kono, D.H. Mechanisms and genetics of autoimmunity. Ann. NY Acad. Sci. 13, 225–235 (1998).
    Article Google Scholar
  24. Moser, K.L. et al. Genome scan of human systemic lupus erythematosus: Evidence for linkage on chromosome 1q in African-American pedigrees. Proc. Natl. Acad. Sci. USA. 95, 14869–14874 (1998).
    Article CAS Google Scholar
  25. Gaffney, P.M. et al. A genome-wide search for susceptibility genes in human systemic lupus erythematosus sib-pair families. Proc. Natl. Acad. Sci. USA. 95, 14875–14879 (1998).
    Article CAS Google Scholar
  26. Berden, J.H., Hang, L., McConahey, P.J. & Dixon, F.J. Analysis of vascular lesions in murine SLE. I. Association with serologic abnormalities. Immunology 130, 1699–1705 (1983).
    CAS Google Scholar
  27. Balomenos, D., Rumold, R. & Theofilopoulos, A.N. Interferon-γ is required for lupus-like disease and lymphoaccumulation in MRL/lpr mice. J. Clin. Invest. 101, 364–371 (1998).
    Article CAS Google Scholar

Download references