Analysis of vertebrate SCL loci identifies conserved enhancers (original) (raw)
Popperl, H. et al. Segmental expression of Hoxb-1 is controlled by a highly conserved autoregulatory loop dependent upon exd/pbx. Cell81, 1031 –1042 (1995). ArticleCAS Google Scholar
Aparicio, S. et al. Detecting conserved regulatory elements with the model genome of the Japanese puffer fish, Fugu rubripes. Proc Natl. Acad. Sci. USA92, 1684–1688 ( 1995). ArticleCAS Google Scholar
Hardison, R.C., Oeltjen, J. & Miller, W. Long human-mouse sequence alignments reveal novel regulatory elements: a reason to sequence the mouse genome. Genome Res.7, 959–966 (1997). ArticleCAS Google Scholar
Rowitch, D.H. et al. Identification of an evolutionary conserved 110 base-pair cis -acting regulatory sequence that governs wnt-1 expression in the murine neural plate. Development125, 2735– 2746 (1998). CASPubMed Google Scholar
Nonchev, S. et al. The conserved role of Krox-20 in directing Hox gene-expression during vertebrate hindbrain segmentation. Proc Natl. Acad. Sci. USA93 , 9339–9345 (1996). ArticleCAS Google Scholar
Oeltjen, J.C. et al. Large-scale comparative sequence analysis of the human and murine Bruton's tyrosine kinase loci reveals conserved regulatory domains. Genome Res.7, 315–329 ( 1997). ArticleCAS Google Scholar
Lamerdin, J.E. et al. Genomic sequence comparison of the human and mouse XRCC1 DNA repair gene regions. Genomics25, 547– 554 (1995). ArticleCAS Google Scholar
Lamerdin, J.E., Stilwagen, S.A., Ramirez, M.H., Stubbs, L. & Carrano, A.V. Sequence analysis of the ERCC2 gene regions in human, mouse, and hamster reveals three linked genes. Genomics34, 399–409 ( 1996). ArticleCAS Google Scholar
Epp, T.A., Wang, R., Sole, M.J. & Liew, C.C. Concerted evolution of mammalian cardiac myosin heavy chain genes. J. Mol. Evol.41, 284–292 (1995). ArticleCAS Google Scholar
Hardison, R. et al. Locus control regions of mammalian beta-globin gene clusters: combining phylogenetic analyses and experimental results to gain functional insights . Gene205, 73–94 (1997). ArticleCAS Google Scholar
Begley, C.G. & Green, A.R. The SCL gene: from case report to critical hematopoietic regulator. Blood93, 2760–70 (1999). CASPubMed Google Scholar
Porcher, C. et al. The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell86, 47–57 (1996). ArticleCAS Google Scholar
Robb, L. et al. The SCL gene product is required for the generation of all hematopoietic lineages in the adult mouse. EMBO J.15, 4123– 4129 (1996). ArticleCAS Google Scholar
Visvader, J.E., Fujiwara, Y. & Orkin, S.H. Unsuspected role for the T-cell leukemia protein SCL/tal-1 in vascular development. Genes Dev.12, 473–479 (1998). ArticleCAS Google Scholar
Gering, M., Rodaway, A.R.F., Göttgens, B., Patient, R.K. & Green, A.R. The SCL gene specifies haemangioblast development from early mesoderm. EMBO J.17, 4029–4045 (1998). ArticleCAS Google Scholar
Drake, C.J., Brandt, S.J., Trusk, T.C. & Little, C.D. TAL1/SCL is expressed in endothelial progenitor cells/angioblasts and defines a dorsal-to-ventral gradient of vasculogenesis. Dev. Biol.192, 17–30 (1997). ArticleCAS Google Scholar
Sinclair, A.M. et al. Distinct 5′ SCL enhancers direct transcription to developing brain, spinal chord and endothelium; conserved neural expression is GATA factor dependent. Dev. Biol.209, 128– 142 (1999). ArticleCAS Google Scholar
Mead, P.E., Kelley, C.M., Hahn, P.S., Piedad, O. & Zon, L.I. SCL specifies hematopoietic mesoderm in Xenopus embryos . Development125, 2611– 2620 (1998). CASPubMed Google Scholar
Lecointe, N. et al. GATA- and SP1-binding sites are required for the full activity of the tissue-specific promoter of the tal-1 gene. Oncogene9, 2623–2632 (1994). CASPubMed Google Scholar
Bockamp, E.-O et al. Lineage-restricted regulation of the murine SCL/TAL-1 promoter. Blood86, 1502–1514 ( 1995). CASPubMed Google Scholar
Bockamp, E.O. et al. Distinct mechanisms direct SCL/tal-1 expression in erythroid cells and CD34 positive primitive myeloid cells. J. Biol. Chem.272, 8781–8790 (1997). ArticleCAS Google Scholar
Bockamp, E.O. et al. Transcriptional regulation of the stem cell leukemia gene by PU.1 and Elf-1. J. Biol. Chem.273, 29032– 29042 (1998). ArticleCAS Google Scholar
Göttgens, B. et al. Transcription of the SCL gene in erythroid and CD34 positive primitive myeloid cells is controlled by a complex network of lineage-restricted chromatin-dependent and chromatin-independent regulatory elements. Oncogene15, 2419–2428 (1997). Article Google Scholar
Sanchez, M.J. et al. An SCL 3′ enhancer targets developing endothelium together with embryonic and adult haematopoietic progenitors. Development126, 3891–3904 ( 1999). CASPubMed Google Scholar
Aplan, P.D. et al. The SCL gene is formed from a transcriptionally complex locus. Mol. Cell Biol.10, 6426–6435 (1990). ArticleCAS Google Scholar
Begley, C.G. et al. Structure of the gene encoding the murine SCL protein. Gene138, 93–99 ( 1994). ArticleCAS Google Scholar
Morgenstern, B., Frech, K., Dress, A. & Werner, T. DIALIGN: Finding local similarities by multiple sequence alignment. Bioinformatics14, 290–294 ( 1998). ArticleCAS Google Scholar
Sonnhammer, E.L. & Durbin, R. A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene167, GC1– GC10 (1995). ArticleCAS Google Scholar
Leroy-Viard, K., Vinit, M.-A, Lecointe, N., Mathieu-Mahul, D. & Romeo, P.-H Distinct DNase-I hypersensitive sites are associated with TAL-1 transcription in erythroid and T-cell lines . Blood84, 3619–3827 (1994). Google Scholar
Xu, G. & Goodridge, A.G. Characterization of a polypyrimidine/polypurine tract in the promoter of the gene for chicken malic enzyme. J. Biol. Chem.271, 16008–16019 (1996). ArticleCAS Google Scholar
Levitt, N., Briggs, D., Gil, A. & Proudfoot, N.J. Definition of an efficient synthetic poly(A) site. Genes Dev.3, 1019–1025 (1989). ArticleCAS Google Scholar
Moreira, A., Wollerton, M., Monks, J. & Proudfoot, N.J. Upstream sequence elements enhance poly(A) site efficiency of the C2 complement gene and are phylogenetically conserved. EMBO J.14, 3809–3819 (1995). ArticleCAS Google Scholar
Moreira, A. et al. The upstream sequence element of the C2 complement poly(A) signal activates mRNA 3′ end formation by two distinct mechanisms. Genes Dev.12, 2522–2534 (1998). ArticleCAS Google Scholar
Kroll, K.K. & Amaya, E. Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development122, 3173– 3183 (1996). CASPubMed Google Scholar
Kroll, K.K. & Amaya, E. in Early development of Xenopus laevis . (eds Sive, H.L., Grainger, R.M. & Harland, R.M.) 393– 414, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; 1998). Google Scholar
Kallianpur, A.R., Jordan, J.E. & Brandt, S.J. The SCL/TAL-1 gene is expressed in progenitors of both the hematopoietic and vascular systems during embryogenesis. Blood83, 1200–1208 ( 1994). CASPubMed Google Scholar
Green, A.R., Visvader, J., Lints, T., Harvey, R. & Begley, C.G. SCL is co-expressed with GATA-1 in haemopoietic cells but is also expressed in developing brain. Oncogene7, 653–660 (1992). CASPubMed Google Scholar
Duret, L. & Bucher, P. Searching for regulatory elements in human noncoding sequences. Curr. Opin. Struct Biol.7, 399–406 (1997). ArticleCAS Google Scholar
Wingender, E., Karas, H. & Knuppel, R. TRANSFAC database as a bridge between sequence data libraries and biological function. Pac. Symp. Biocomput. 477–485 (1997).
Kolchanov, N.A. et al. GeneExpress: a computer system for description, analysis, and recognition of regulatory sequences in eukaryotic genome. Intelligent Systems for Molecular Biology6, 95– 104 (1998). CAS Google Scholar
Long, Q. et al. GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. Development124, 4105–4111 (1997). CAS Google Scholar
Meng, A. et al. Positive and negative _cis_-acting elements are required for hematopoietic expression of zebrafish GATA-1. Blood93, 500–508 (1999). CASPubMed Google Scholar
Yuh, C.H. & Davidson, E.H. Modular _cis_-regulatory organization of Endo16, a gut-specific gene of the sea urchin embryo. Development122, 1069–1082 (1996). CASPubMed Google Scholar
Kirchhamer, C.V. & Davidson, E.H. Spatial and temporal information processing in the sea urchin embryo: modular and intramodular organization of the CyIIIa gene _cis_-regulatory system. Development122, 333–348 (1996). CASPubMed Google Scholar
Arnone, M.I. & Davidson, E.H. The hardwiring of development: organization and function of genomic regulatory systems. Development124, 1851–1864 ( 1997). CASPubMed Google Scholar
Eeckman, F.H. & Durbin, R. ACeDB and macace. Methods Cell Biol.48, 583–605 ( 1995). ArticleCAS Google Scholar
Göttgens, B. et al. The pufferfish SLP-1 gene, a new member of the SCL/TAL-1 family of transcription factors. Genomics48, 52–62 (1998). Article Google Scholar
Altschul, S.F., Gish, W., Miller, W., Meyers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol.215, 403–410 ( 1990). ArticleCAS Google Scholar
Quandt, K., Frech, K., Karas, H., Wingender, E. & Werner, T. MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res.23, 4878–4884 (1995). ArticleCAS Google Scholar