Gene-target recognition among members of the Myc superfamily and implications for oncogenesis (original) (raw)

References

  1. Evan, G. & Littlewood, T.D. The role of c-myc in cell growth. Curr. Opin. Genet. Dev. 3, 44– 49 (1993).
    Article CAS Google Scholar
  2. Amati, B. & Land, H. Myc-Max-Mad: a transcription factor network controlling cell cycle progression, differentiation and death. Curr. Opin. Genet. Dev. 4, 102–108 (1994).
    Article CAS Google Scholar
  3. Blackwood, E.M., Kretzner, L. & Eisenman, R.N. Myc and Max function as a nucleoprotein complex. Curr. Opin. Genet. Dev. 2, 227–235 (1992).
    Article CAS Google Scholar
  4. Henriksson, M. & Luscher, B. Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv. Cancer Res. 68, 109–182 ( 1996).
    Article CAS Google Scholar
  5. Schreiber-Agus, N. & DePinho, R.A. Repression by the Mad(Mxi1)-Sin3 complex. Bioessays 20, 808–818 (1998).
    Article CAS Google Scholar
  6. Blackwell, T.K., Kretzner, L., Blackwood, E.M., Eisenman, R.N. & Weintraub, H. Sequence-specific DNA binding by the c-Myc protein. Science 250, 1149– 1151 (1990).
    Article CAS Google Scholar
  7. Kretzner, L., Blackwood, E.M. & Eisenman, R.N. Myc and Max proteins possess distinct transcriptional activities. Nature 359, 426– 429 (1992).
    Article CAS Google Scholar
  8. Ayer, D.E., Kretzner, L. & Eisenman, R.N. Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell 72, 211 –222 (1993).
    Article CAS Google Scholar
  9. Ferre d'Amare, A., Prendergast, G.C., Ziff, E.B. & Burley, S.K. Recognition of Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 363, 38–45 ( 1993).
    Article CAS Google Scholar
  10. Grandori, C., Mac, J., Siebelt, F., Ayer, D.E. & Eisenman, R.N. Myc-Max heterodimers activate a DEAD box gene and interact with multiple E box-related sites in vivo. EMBO J. 15, 4344–4357 (1996).
    Article CAS Google Scholar
  11. Solomon, D.L., Amati, B. & Land, H. Distinct DNA binding preferences for the c-Myc/Max and Max/Max dimers. Nucleic Acids Res. 21, 5372–5376 (1993).
    Article CAS Google Scholar
  12. Halazonetis, T.D. & Kandil, A.N. Determination of the c-MYC DNA-binding site. Proc. Natl Acad. Sci. USA 88, 6162–6166 (1991).
    Article CAS Google Scholar
  13. Fisher, F. & Goding, C.R. Single amino acid substitutions alter helix-loop-helix protein specificity for bases flanking the core CANNTG motif. EMBO J. 11, 4103– 4109 (1992).
    Article CAS Google Scholar
  14. Hurlin, P.J., Queva, C. & Eisenman, R.N. Mnt, a novel Max-interacting protein is coexpressed with Myc in proliferating cells and mediates repression at Myc binding sites. Genes Dev. 11, 44–58 (1997).
    Article CAS Google Scholar
  15. Greenberg, R.A. et al. Telomerase reverse transcriptase is a direct target of c-Myc but is not functionally equivalent in cellular transformation. Oncogene 18, 1219–1226 ( 1999).
    Article CAS Google Scholar
  16. Krikos, A., Laherty, C.D. & Dixit, V.M. Transcriptional activation and the tumor necrosis factor α-inducible zinc finger protein, A20, is mediated by κB elements. J. Biol. Chem. 267, 17971– 17976 (1992).
    CAS PubMed Google Scholar
  17. Chiorini, J.A., Miyamoto, S., Harkin, S.J. & Safer, B. Genomic cloning and characterization of the human eukaryotic initiation factor-2ß promoter. J. Biol. Chem. 274, 4195– 4201 (1999).
    Article CAS Google Scholar
  18. Dang, C.V. c-Myc target genes involved in cell growth, apoptosis and metabolism. Mol. Cell. Biol. 19, 1–11 (1999).
    Article CAS Google Scholar
  19. Grandori, C. & Eisenman, R.N. Myc target genes. Trends Biochem. Sci. 22, 177–181 (1997).
    Article CAS Google Scholar
  20. Felsher, D.W. & Bishop, J.M. Transient excess of MYC activity can elicit genomic instability and tumorigenesis. Proc. Natl Acad. Sci. USA 96, 3940–3944 ( 1999).
    Article CAS Google Scholar
  21. Lee, T.C., Li, L., Philipson, L. & Ziff, E.B. Myc represses transcription of the growth arrest gene gas1. Proc. Natl Acad. Sci. USA 94, 12886–12891 (1997).
    Article CAS Google Scholar
  22. Marhin, W.M., Chen, S., Facchini, L.M., Fornace, A.J. Jr & Penn, L.Z. Myc represses the growth arrest gene gadd45. Oncogene 14, 2825– 2834 (1997).
    Article CAS Google Scholar
  23. Wu, K.J., Polack, A. & Dalla-Favera, R. Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by c-Myc. Science 283, 676– 679 (1999).
    Article CAS Google Scholar
  24. Li, L.H., Nerlov, C., Prendergast, G., MacGregor, D. & Ziff, E.B. c-Myc represses transcription in vivo by a novel mechanism dependent on the initiator element and Myc box II. EMBO J. 13, 4070–4079 (1994).
    Article CAS Google Scholar
  25. Lee, L.A. & Dang, C.V. c-Myc transrepression and cell transformation. Curr. Top. Microbiol. Immunol. 224, 131 –135 (1999).
    Google Scholar
  26. Kauffmann-Zeh, A. Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature 385, 544–548 (1997).
    Article CAS Google Scholar
  27. Mukherjee, B., Morgenbesser, S.D. & DePinho, R.A. Myc family oncoproteins function through a common pathway to transform normal cells in culture: cross-interference by Max and trans-acting dominant mutants. Genes Dev. 6, 1480–1492 (1992).
    Article CAS Google Scholar
  28. Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K. & Pease, L.R. Site directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59 (1989).
    Article CAS Google Scholar
  29. Schreiber-Agus, N. et al. An amino-terminal domain of Mxi1 mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3. Cell 80, 777–786 (1995).
    Article CAS Google Scholar
  30. Jones, T.A., Zou, J.Y. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 ( 1991).
    Article Google Scholar
  31. Ferre-D'Amare, A.R., Pognonec, P., Roeder, R.G. & Burley, S.K. Structure and function of the b/HLH/Z domain of USF. EMBO J. 13, 180–189 (1994).
    Article CAS Google Scholar
  32. Shimizu, T. et al. Crystal structure of PHO4 bHLH domain-DNA complex: flanking base recognition. EMBO J. 16, 4689– 4697 (1997).
    Article CAS Google Scholar
  33. Christopher, J.A. SPOCK: The Structural Properties Observation and Calculation Kit (Texas A & M University, The Center for Macromolecular Design, College Station, 1998).
  34. Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D. & Lowe, S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 ( 1997).
    Article CAS Google Scholar
  35. DeRisi, J. et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nature Genet. 14, 457– 460 (1996).
    Article CAS Google Scholar
  36. Khan, J. et al. Gene expression profiling of alveolar rhabdomyosarcoma with cDNA microarrays. Cancer Res. 58, 5009– 5013 (1998).
    CAS PubMed Google Scholar
  37. Chen, Y., Dougherty, E.R. & Bittner, M.L. Ratio-based decisions and the quantitative analysis of cDNA microarray images. J. Biomed. Optics 2, 364–374 (1997).
    Article CAS Google Scholar

Download references