Mice mutant for Egfr and Shp2 have defective cardiac semilunar valvulogenesis (original) (raw)
Mclaren, A. & Bowman, P. Mouse chimaeras derived from fusion of embryos differing by nine genetic factors. Nature224, 238–240 (1969). ArticleCAS Google Scholar
Luettke, N.C. et al. The mouse _waved_-2 phenotype results from a point mutation in the EGF receptor tyrosine kinase. Genes Dev.8, 399–413 (1994). Article Google Scholar
Arrandale, J.M. et al. Insulin signaling in mice expressing reduced levels of Syp. J. Biol. Chem.271, 21353–21358 (1996). ArticleCAS Google Scholar
Van Vactor, D., O'Reilly, A.O. & Neel, B.G. Genetic analysis of protein tyrosine phosphatases. Curr. Opin. Genet. Dev.8, 112–126 (1998). Article Google Scholar
McLaren, A. The microscopic appearance of _waved_-2 mouse hairs. Genet. Res.17, 257–260 (1971). ArticleCAS Google Scholar
Sibilia, M. & Wagner, E.F. Strain-dependent epithelial defects in mice lacking the EGF receptor. Science269, 234–237 (1995). ArticleCAS Google Scholar
Threadgill, D.W. et al. Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science269, 230–234 (1995). ArticleCAS Google Scholar
Miettinen, P.J. et al. Epithelial immaturity and multiorgan failure in mice lacking epidermal growth factor receptor. Nature376, 337–341 (1995). ArticleCAS Google Scholar
Sibilia, M., Steinbach, J.P., Stingl, L., Aguzzi, A. & Wagner, E.F. A strain-independent postnatal neurodegeneration in mice lacking the EGF receptor. EMBO J.13, 719–731 (1998). Article Google Scholar
Saxton, T.M. et al. Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase SHP-2. EMBO J.16, 2352–2364 (1997). ArticleCAS Google Scholar
Wang, D.Z.M. et al. Mutation in Sos1 dominantly enhances a weak allele of the EGFR, demonstrating a requirement for Sos1 in EGFR signaling and development. Genes Dev.11, 309–320 (1997). ArticleCAS Google Scholar
Qu, C.K., Yu, W.M., Azzarelli, B. & Feng, G.-S Genetic evidence that SHP-2 tyrosine phosphatase is a signal enhancer of the epidermal growth factor receptor in mammals. Proc. Natl Acad. Sci. USA96, 8528–8533 (1999). ArticleCAS Google Scholar
Greco, T.L. et al. Analysis of the vestigial tail mutation demonstrates that _Wnt_-3a gene dosage regulates mouse axial development. Genes Dev.10, 313–324 (1996). ArticleCAS Google Scholar
Takada, S. et al. _Wnt_-3a regulates somites and tail-bud formation in the mouse embryo. Genes Dev.8, 174–189 (1994). ArticleCAS Google Scholar
Kirby, M.L. & Waldo, K.L. Neural crest and cardiovascular patterning. Circ. Res.77, 211–215 (1995). ArticleCAS Google Scholar
Luetteke, N.C. et al. Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development126, 2739–2750 (1999). CASPubMed Google Scholar
Potts, J. & Runyan, R. Epithelial-mesenchymal cell transformation in the embryonic heart can be mediated, in part, by transforming growth factor β. Dev. Biol.134, 392–401 (1989). ArticleCAS Google Scholar
Potts, J.D., Dagle, J.M., Walder, J.A., Weeks, D.L. & Runyan, R.B. Epithelial-mesenchymal transformation of embryonic cardiac endothelial cells is inhibited by a modified antisense oligodeoxynucleotide to transforming growth factor β 3. Proc. Natl Acad. Sci. USA88, 1516–1520 (1991). ArticleCAS Google Scholar
Clark, E.B., Markwald, R.R. & Takao, A. Overview: cardiac morphogenesis. in Developmental Mechanisms of Heart Disease 157–168 (Futura, Armonk, 1995). Google Scholar
Lakkis, M.M. & Epstein, J.A. Neurofibromin modulation of ras activity is required for normal endocardial-mesenchymal transformation in the developing heart. Development125, 4359–4367 (1998). CASPubMed Google Scholar
Kretzschmar, M., Doody, J. & Massague, J. Opposing BMP and EGF signalling pathways converge on the TGF-β family mediator Smad1. Nature389, 618–622 (1997). ArticleCAS Google Scholar
Gill, G.N. & Lazar, C.S. Increased phosphotyrosine content and inhibition of proliferation in EGF-treated A431 cells. Nature293, 305–307 (1981). ArticleCAS Google Scholar
Barnes, D.W. Epidermal growth factor inhibits growth of A431 human epidermoid carcinoma in serum-free cell culture. J. Cell Biol.93, 1–4 (1982). ArticleCAS Google Scholar
MacLeod, C.L., Luk, A., Castagnola, J., Cronin, M. & Mendelsohn, J. EGF induces cell cycle arrest of A431 human epidermoid carcinoma cells. J. Cell Physiol.127, 175–182 (1986). ArticleCAS Google Scholar
Erickson, S.L. et al. ErbB3 is required for normal cerebellar and cardiac development: a comparison with ErbB2- and heregulin-deficient mice. Development124, 4999–5011 (1997). CASPubMed Google Scholar
Carraway, K.L.I. & Cantley, L.C. A new acquaintance for ErB3 and ErB4: a role for receptor heterodimerization in growth signaling. Cell78, 5–8 (1994). ArticleCAS Google Scholar
Ranger, A.M. et al. The transcription factor NF-ATc is essential for cardiac valve formation. Nature392, 186–189 (1998). ArticleCAS Google Scholar
de la Pompa, J.L. et al. Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum. Nature392, 182–186 (1998). Article Google Scholar
Kupershmidt, S. et al. Replacement by homologous recombination of the minK gene with lacZ reveals restriction of minK expression to the mouse cardiac conduction system. Circ. Res.84, 146–152 (1999). ArticleCAS Google Scholar
Lorenz, J.N. & Robbins, J. Measurement of intraventricular pressure and cardiac performance in the intact closed-chest anesthetized mouse. Am. J. Physiol.272, 1137–1146 (1997). Google Scholar