In vivo visualization of gene expression using magnetic resonance imaging (original) (raw)
References
Davidson, E.H. Gene activity in early development, Edn. 3 (Academic Press, New York, NY; 1986). Google Scholar
Gerhart, J. & Kirschner, M. Cells embryos and evolution. (Blackwell, New York, NY; 1997). Google Scholar
Wilson, E.B. The cell in development and inheritance (Macmillan, New York, NY; 1986). Google Scholar
Zlokarnik, G. et al. Quantitation of transcription and clonal selection of single living cells with beta-lactamase as reporter. Science279, 84–88 (1998). ArticleCAS Google Scholar
Nunez, L., Faught, W.J. & Frawley, L.S. Episodic gonadotropin-releasing hormone gene expression revealed by dynamic monitoring of luciferase reporter activity in single, living neurons. Proc. Natl. Acad. Sci. USA95, 9648–9653 (1998). ArticleCAS Google Scholar
Arnone, M.I. et al. Green fluorescent protein in the sea urchin: new experimental approaches to transcriptional regulatory analysis in embryos and larvae. Development124, 4649–4659 (1997). CASPubMed Google Scholar
Chiu, W. et al. Engineered GFP as a vital reporter in plants. Curr. Biol.6, 325–330 ( 1996). ArticleCAS Google Scholar
Amsterdam, A., Lin, S. & Hopkins, N. The Aequorea victoria green fluorescent protein can be used as a reporter in live zebrafish embryos. Dev. Biol.171, 123–129 ( 1995). ArticleCAS Google Scholar
Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. & Prasher, D. Green fluorescent protein as a marker for gene expression. Science263, 802–805 (1994). ArticleCAS Google Scholar
Tjuvajev, J.G. et al. Imaging the expression of transfected genes in vivo. Cancer Res.55, 6126–6132 (1995). CASPubMed Google Scholar
Tjuvajev, J.G. et al. Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression:a potential method for monitoring clinical gene therapy. Cancer Res.56, 4087–4095 (1996). CASPubMed Google Scholar
Gambhir, S.S. et al. Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc. Natl. Acad. Sci. USA96, 2333–2338 ( 1999). ArticleCAS Google Scholar
Li, W.H., Fraser, S.E. & Meade, T.J. A calcium-sensitive magnetic resonance imaging contrast agent. J. Am. Chem. Soc.121, 1413– 1414 (1999). ArticleCAS Google Scholar
Bowtell, R.W. et al. NMR microscopy of single neurons using spin-echo and line-narrowed 2DFT imaging. Magn. Reson. Med.33, 790– 794 (1995). ArticleCAS Google Scholar
Rofe, C.T., Vannoort, J., Back, P.J. & Callaghan, P.T. NMR microscopy using large, pulsed magnetic-field gradients. J. Magn. Reson. B.108, 125–136 ( 1995). ArticleCAS Google Scholar
Mellin, A.F. et al. 3-Dimensional magnetic-resonance microangiography of rat neurovasculature. Mag. Reson. Med.32, 199– 205 (1994). ArticleCAS Google Scholar
Liang, Z.P. & Lauterbur, P.C. An efficient method for dynamic magnetic-resonance imaging. IEEE Trans. Med. Imaging13, 677–686 (1994). ArticleCAS Google Scholar
Jacobs, R.E. & Fraser, S.E. Magnetic resonance microscopy of embryonic-cell lineages and movements. Science263, 681–684 (1994). ArticleCAS Google Scholar
Hueber, M.M. et al. Fluorescently detectable magnetic resonance imaging agents. Bioconjug. Chem.9, 242– 249 (1998). ArticleCAS Google Scholar
Su, M.Y., Muhler, A., Lao, X.Y. & Nalcioglu, O. Tumor characterization with dynamic contrast-enhanced MRI using MR contrast agents of various molecular weights. Mag. Res. Med.39, 259– 269 (1998). ArticleCAS Google Scholar
Aime, S., Botta, M., Fasano, M. & Terreno, E. Lanthanide(III) chelates for NMR biomedical applications. Chem. Soc. Rev.27, 19–29 (1998). ArticleCAS Google Scholar
Shukla, R. et al. Design of conformationally rigid dimeric MRI agents. Mag. Res. Med.35, 928–931 (1996). ArticleCAS Google Scholar
Bertini, I. & Luchinat, C. NMR of paramagnetic molecules in biological systems (eds Gray, H.B. & Lever, A.B.P.) (Benjamin/Cummings, Menlo Park, CA; 1986). Google Scholar
Moore, A., Basilion, J.P., Chiocca, E.A. & Weissleder, R. Measuring transferrin receptor gene expression by NMR imaging. BBA1402, 239–249 ( 1998). CASPubMed Google Scholar
Weissleder, R. et al. MR imaging and scintigraphy of gene expression through melanin induction. Radiology204, 425– 429 (1997). ArticleCAS Google Scholar
Moats, R.A., Fraser, S.E. & Meade, T.J. A “smart” magnetic resonance imaging agent that reports on specific enzyme activity. Angew. Chem. Intl. Edn. Engl. 726–728 (1997).
Ahrens, E.T., Rothbacher, U., Jacobs, R.E. & Fraser, S.E. A model for MRI contrast enhancement using T1 agents. Proc. Natl. Acad. Sci. USA95, 8443–8448 (1998). ArticleCAS Google Scholar
Zhang, X. et al. pH dependence of relaxivities and hydration numbers of gadolinium(III) complexes of macrocyclic amino carboxylates. Inorg. Chem31, 5597–5600 (1992). ArticleCAS Google Scholar
Horrocks, W.D. & Sudnick, D.R. Lanthanide ion probes of structure in biology. Laser-induced luminescence decay constants provide a direct measure of the number of metal-coordinated water molecules. J. Am. Chem. Soc.101, 334– 340 (1979). ArticleCAS Google Scholar
Wetts, R. & Fraser, S.E. Slow intermixing of cells during Xenopus embryogenesis contributes to the consistency of the blastomere fate map. Development105, 9– 15 (1989). CASPubMed Google Scholar
Kroll, K.L. & Amaya, E. Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development122, 3173– 3183 (1996). CASPubMed Google Scholar
Kayyem, J.F., Kumar, R.M., Fraser, S.E. & Meade, T.J. Receptor-targeted co-transport of DNA and magnetic resonance contrast agents. Chem. Biol.2, 615–620 (1995). ArticleCAS Google Scholar
Bogdanov, A. & Weissleder, R. The development of in vivo imaging systems to study gene expression. Trends Biotech.16, 5–10 (1998 ). ArticleCAS Google Scholar
Josephson, L., Tung, C., Moore, A. & Weissleder, R. High-efficiency intracellular magnetic labeling with novel superparamagnetic-tat peptide conjugates. Bioconjug. Chem.10, 186– 191 (1999). ArticleCAS Google Scholar
Kay, B.K., Peng, H.B., Methods in Cell Biology Vol. 6 (Academic Press, NY, 1991). Google Scholar