In vivo visualization of gene expression using magnetic resonance imaging (original) (raw)

References

  1. Davidson, E.H. Gene activity in early development, Edn. 3 (Academic Press, New York, NY; 1986).
    Google Scholar
  2. Gerhart, J. & Kirschner, M. Cells embryos and evolution. (Blackwell, New York, NY; 1997).
    Google Scholar
  3. Wilson, E.B. The cell in development and inheritance (Macmillan, New York, NY; 1986).
    Google Scholar
  4. Zlokarnik, G. et al. Quantitation of transcription and clonal selection of single living cells with beta-lactamase as reporter. Science 279, 84–88 (1998).
    Article CAS Google Scholar
  5. Nunez, L., Faught, W.J. & Frawley, L.S. Episodic gonadotropin-releasing hormone gene expression revealed by dynamic monitoring of luciferase reporter activity in single, living neurons. Proc. Natl. Acad. Sci. USA 95, 9648–9653 (1998).
    Article CAS Google Scholar
  6. Arnone, M.I. et al. Green fluorescent protein in the sea urchin: new experimental approaches to transcriptional regulatory analysis in embryos and larvae. Development 124, 4649–4659 (1997).
    CAS PubMed Google Scholar
  7. Chiu, W. et al. Engineered GFP as a vital reporter in plants. Curr. Biol. 6, 325–330 ( 1996).
    Article CAS Google Scholar
  8. Amsterdam, A., Lin, S. & Hopkins, N. The Aequorea victoria green fluorescent protein can be used as a reporter in live zebrafish embryos. Dev. Biol. 171, 123–129 ( 1995).
    Article CAS Google Scholar
  9. Prasher, D. Using GFP to see the light. TIG 11, 320– 323 (1995).
    Article CAS Google Scholar
  10. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. & Prasher, D. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).
    Article CAS Google Scholar
  11. Tjuvajev, J.G. et al. Imaging the expression of transfected genes in vivo. Cancer Res. 55, 6126–6132 (1995).
    CAS PubMed Google Scholar
  12. Tjuvajev, J.G. et al. Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression:a potential method for monitoring clinical gene therapy. Cancer Res. 56, 4087–4095 (1996).
    CAS PubMed Google Scholar
  13. Gambhir, S.S. et al. Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc. Natl. Acad. Sci. USA 96, 2333–2338 ( 1999).
    Article CAS Google Scholar
  14. Li, W.H., Fraser, S.E. & Meade, T.J. A calcium-sensitive magnetic resonance imaging contrast agent. J. Am. Chem. Soc. 121, 1413– 1414 (1999).
    Article CAS Google Scholar
  15. Bowtell, R.W. et al. NMR microscopy of single neurons using spin-echo and line-narrowed 2DFT imaging. Magn. Reson. Med. 33, 790– 794 (1995).
    Article CAS Google Scholar
  16. Rofe, C.T., Vannoort, J., Back, P.J. & Callaghan, P.T. NMR microscopy using large, pulsed magnetic-field gradients. J. Magn. Reson. B. 108, 125–136 ( 1995).
    Article CAS Google Scholar
  17. Mellin, A.F. et al. 3-Dimensional magnetic-resonance microangiography of rat neurovasculature. Mag. Reson. Med. 32, 199– 205 (1994).
    Article CAS Google Scholar
  18. Liang, Z.P. & Lauterbur, P.C. An efficient method for dynamic magnetic-resonance imaging. IEEE Trans. Med. Imaging 13, 677–686 (1994).
    Article CAS Google Scholar
  19. Jacobs, R.E. & Fraser, S.E. Magnetic resonance microscopy of embryonic-cell lineages and movements. Science 263, 681–684 (1994).
    Article CAS Google Scholar
  20. Hueber, M.M. et al. Fluorescently detectable magnetic resonance imaging agents. Bioconjug. Chem. 9, 242– 249 (1998).
    Article CAS Google Scholar
  21. Su, M.Y., Muhler, A., Lao, X.Y. & Nalcioglu, O. Tumor characterization with dynamic contrast-enhanced MRI using MR contrast agents of various molecular weights. Mag. Res. Med. 39, 259– 269 (1998).
    Article CAS Google Scholar
  22. Aime, S., Botta, M., Fasano, M. & Terreno, E. Lanthanide(III) chelates for NMR biomedical applications. Chem. Soc. Rev. 27, 19–29 (1998).
    Article CAS Google Scholar
  23. Shukla, R. et al. Design of conformationally rigid dimeric MRI agents. Mag. Res. Med. 35, 928–931 (1996).
    Article CAS Google Scholar
  24. Bertini, I. & Luchinat, C. NMR of paramagnetic molecules in biological systems (eds Gray, H.B. & Lever, A.B.P.) (Benjamin/Cummings, Menlo Park, CA; 1986).
    Google Scholar
  25. Moore, A., Basilion, J.P., Chiocca, E.A. & Weissleder, R. Measuring transferrin receptor gene expression by NMR imaging. BBA 1402, 239–249 ( 1998).
    CAS PubMed Google Scholar
  26. Weissleder, R. et al. MR imaging and scintigraphy of gene expression through melanin induction. Radiology 204, 425– 429 (1997).
    Article CAS Google Scholar
  27. Moats, R.A., Fraser, S.E. & Meade, T.J. A “smart” magnetic resonance imaging agent that reports on specific enzyme activity. Angew. Chem. Intl. Edn. Engl. 726–728 (1997).
  28. Ahrens, E.T., Rothbacher, U., Jacobs, R.E. & Fraser, S.E. A model for MRI contrast enhancement using T1 agents. Proc. Natl. Acad. Sci. USA 95, 8443–8448 (1998).
    Article CAS Google Scholar
  29. Zhang, X. et al. pH dependence of relaxivities and hydration numbers of gadolinium(III) complexes of macrocyclic amino carboxylates. Inorg. Chem 31, 5597–5600 (1992).
    Article CAS Google Scholar
  30. Horrocks, W.D. & Sudnick, D.R. Lanthanide ion probes of structure in biology. Laser-induced luminescence decay constants provide a direct measure of the number of metal-coordinated water molecules. J. Am. Chem. Soc. 101, 334– 340 (1979).
    Article CAS Google Scholar
  31. Wetts, R. & Fraser, S.E. Slow intermixing of cells during Xenopus embryogenesis contributes to the consistency of the blastomere fate map. Development 105, 9– 15 (1989).
    CAS PubMed Google Scholar
  32. Kroll, K.L. & Amaya, E. Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122, 3173– 3183 (1996).
    CAS PubMed Google Scholar
  33. Kayyem, J.F., Kumar, R.M., Fraser, S.E. & Meade, T.J. Receptor-targeted co-transport of DNA and magnetic resonance contrast agents. Chem. Biol. 2, 615–620 (1995).
    Article CAS Google Scholar
  34. Bogdanov, A. & Weissleder, R. The development of in vivo imaging systems to study gene expression. Trends Biotech. 16, 5–10 (1998 ).
    Article CAS Google Scholar
  35. Josephson, L., Tung, C., Moore, A. & Weissleder, R. High-efficiency intracellular magnetic labeling with novel superparamagnetic-tat peptide conjugates. Bioconjug. Chem. 10, 186– 191 (1999).
    Article CAS Google Scholar
  36. Kay, B.K., Peng, H.B., Methods in Cell Biology Vol. 6 (Academic Press, NY, 1991).
    Google Scholar

Download references