Human LINE retrotransposons generate processed pseudogenes (original) (raw)

References

  1. Jensen, S. & Heidmann, T. An indicator gene for detection of germline retrotransposition in transgenic drosophila demonstrates RNA-mediated transposition of the LINE I element. EMBO J. 10, 1927–1937 (1991).
    Article CAS Google Scholar
  2. Moran, J.V. et al. High frequency retroposition in cultured mammalian cells. Cell 87, 917–927 (1996).
    Article CAS Google Scholar
  3. Boeke, J.D. & Stoye, J.P. Retrotransposons, endogenous retroviruses, and the evolution of retroelements. in Retroviruses (eds Coffin, J.M., Hughes, S.H. & Varmus, H.E.) 343– 435 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1997).
    Google Scholar
  4. Kazazian, H.H.J. & Moran, J.V. The impact of L1 retrotransposons on the human genome. Nature Genet. 19, 19–24 (1998).
    Article CAS Google Scholar
  5. Vanin, E.F. Processed pseudogenes: characteristics and evolution. Annu. Rev. Genet. 19, 253–272 ( 1985).
    Article CAS Google Scholar
  6. Weiner, A.M., Deininger, P.L. & Efstratiadis, A. Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu. Rev. Biochem. 55, 631–661 (1986).
    Article CAS Google Scholar
  7. Heidmann, O. & Heidmann, T. Retrotransposition of a mouse IAP sequence tagged with an indicator gene. Cell 64, 159–170 (1991).
    Article CAS Google Scholar
  8. Maestre, J., Tchénio, T., Dhellin, O. & Heidmann, T. mRNA retroposition in human cells: processed pseudogene formation. EMBO J. 14, 6333–6338 ( 1995).
    Article CAS Google Scholar
  9. Dombroski, B.A., Mathias, S.L., Nanthakumar, E., Scott, A.F. & Kazazian, H.H. Isolation of an active human transposable element. Science 254, 1805– 1808 (1991).
    Article CAS Google Scholar
  10. Dhellin, O., Maestre, J. & Heidmann, T. Functional differences between the human LINE retrotransposon and retroviral reverse transcriptases for in vivo mRNA reverse transcription. EMBO J. 16, 6590–6602 (1997).
    Article CAS Google Scholar
  11. Kazazian, H.H.J. An estimated frequency of endogenous insertional mutations in human. Nature Genet. 22, 130 (1999).
    Article CAS Google Scholar
  12. Moran, J.V., DeBerardinis, R.J. & Kazazian, H.H. Jr Exon shuffling by L1 retrotransposition. Science 283, 1530–1534 (1999).
    Article CAS Google Scholar
  13. Eickbush, T. Exon shuffling in retrospect. Science 283, 1465–1467 (1999).
    Article CAS Google Scholar
  14. Brosius, J. Retroposons–seeds of evolution. Science 15, 753 (1991).
    Article Google Scholar
  15. Lahn, B.T. & Page, D.C. Retroposition of autosomal mRNA yielded testis-specific gene family on human Y chromosome. Nature Genet. 21, 429–433 ( 1999).
    Article CAS Google Scholar
  16. Finnegan, D.J. The I factor and I-R hybrid dysgenesis in Drosophila melanogaster. in Mobile DNA (eds Berg, D.E. & Howe, M.M.) 503– 517 (American Society for Microbiology, Washington, DC, 1989).
    Google Scholar
  17. Boeke, J.D. LINEs and Alu–the polyA connection. Nature Genet. 16, 6–7 (1997).
    Article CAS Google Scholar
  18. Tchénio, T., Ségal-Bendirdjian, E. & Heidmann, T. Generation of processed pseudogenes in murine cells. EMBO J. 12, 1487– 1497 (1993).
    Article Google Scholar
  19. Klenerman, P., Hengartner, H. & Zinkernagel, R.M. Anon-retroviral RNA virus persists in DNA form. Nature 390, 298–301 ( 1997).
    Article CAS Google Scholar
  20. Weiss, R.A. & Kellam, P. Illicit viral DNA. Nature 390, 235–236 ( 1997).
    Article CAS Google Scholar
  21. Gabriel, A. & Teng, S.-C. LCMV cDNA formation: which reverse transcriptase is responsible? Trends Genet. 14, 220–221 (1998).
    Article CAS Google Scholar
  22. Carlton, M.B., Colledge, W.H. & Evans, M.J. Generation of a pseudogene during retroviral infection. Mamm. Genome 6, 90–95 (1995).
    Article CAS Google Scholar
  23. Boeke, J.D., Garfinkel, D.J., Styles, C.A. & Fink, G.R. Ty elements transpose through an RNA intermediate. Cell 40, 491–500 (1985).
    Article CAS Google Scholar
  24. Dornburg, R. & Temin, H.M. cDNA genes formed after infection with retroviral vector particles lack the hallmarks of natural processed pseudogenes. Mol. Cell. Biol. 10, 68– 74 (1990).
    Article CAS Google Scholar
  25. Levine, K.L. et al. Unusual features of integrated cDNAs generated by infection with genome-free retroviruses. Mol. Cell. Biol. 10, 1891–1900 (1990).
    Article CAS Google Scholar
  26. Derr, L.K., Strathern, J.N. & Garfinkel, D.J. RNA-mediated recombination in S. cerevisiae. Cell 67, 355–364 (1991).
    Article CAS Google Scholar
  27. Martin, S.L. Ribonucleoprotein particles with LINE-1 RNA in mouse embryonal carcinoma cells. Mol. Cell. Biol. 11, 4804– 4807 (1991).
    Article CAS Google Scholar
  28. Hohjoh, H. & Singer, M. Cytolasmic ribonucleoprotein complexes containing human LINE-1 protein and RNA. EMBO J. 15 , 630–639 (1996).
    Article CAS Google Scholar
  29. Sandmeyer, S. Targeting transposition: at home in the genome. Genome Res. 8, 416–418 (1998).
    Article CAS Google Scholar
  30. Kim, J.M., Vanguri, S., Boeke, J.D., Gabriel, A. & Voytas, D.F. Transposable element and genome organisation: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res. 8, 464 –478 (1998).
    Article CAS Google Scholar

Download references