Synaptic plasticity and dynamic modulation of the postsynaptic membrane (original) (raw)
Harris, K. M. & Kater, S. B. Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu. Rev. Neurosci.17, 341–371 (1994). ArticleCAS Google Scholar
Segal, M., Korkotian, E. & Murphy, D. D. Dendritic spine formation and pruning: common cellular mechanisms? Trends Neurosci.23, 53–57 (2000). ArticleCAS Google Scholar
Muller, D. Ultrastructural plasticity of excitatory synapses. Rev. Neurosci.8, 77–93 (1997). ArticleCAS Google Scholar
Edwards, F. A. Anatomy and electrophysiology of fast central synapses lead to a structural model for long-term potentiation. Physiol. Rev.75, 759–787 (1995). ArticleCAS Google Scholar
Lisman, J. E. & Harris, K. M. Quantal analysis and synaptic anatomy—integrating two views of hippocampal plasticity. Trends Neurosci.16, 141–147 (1993). ArticleCAS Google Scholar
van Rossum, D. & Hanisch, U. K. Cytoskeletal dynamics in dendritic spines: direct modulation by glutamate receptors? Trends Neurosci.22, 290–295 (1999). ArticleCAS Google Scholar
Matus, A. Postsynaptic actin and neuronal plasticity. Curr. Opin. Neurobiol.9, 561–565 (1999). ArticleCAS Google Scholar
Dailey, M. E. & Smith, S. J. The dynamics of dendritic structure in developing hippocampal slices. J. Neurosci.16, 2983–2994 (1996). ArticleCAS Google Scholar
Ziv, N. E. & Smith, S. J. Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron17, 91–102 (1996). ArticleCAS Google Scholar
Maletic-Savatic, M., Malinow, R. & Svoboda, K. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science283, 1923–1927 (1999). ArticleCAS Google Scholar
Fiala, J. C., Feinberg, M., Popov, V. & Harris, K. M. Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J. Neurosci.18, 8900–8911 (1998). ArticleCAS Google Scholar
Fischer, M., Kaech, S., Knutti, D. & Matus, A. Rapid actin-based plasticity in dendritic spines. Neuron20, 847–854 (1998). ArticleCAS Google Scholar
Kaech, S., Brinkhaus, H. & Matus, A. Volatile anesthetics block actin-based motility in dendritic spines. Proc. Natl. Acad. Sci. USA96, 10433–10437 (1999). ArticleCAS Google Scholar
Kim, C. H. & Lisman, J. E. A role of actin filament in synaptic transmission and long-term potentiation. J. Neurosci.19, 4314–4324 (1999). ArticleCAS Google Scholar
Hosokawa, T., Rusakov, D. A., Bliss, T. V. & Fine, A. Repeated confocal imaging of individual dendritic spines in the living hippocampal slice: evidence for changes in length and orientation associated with chemically induced LTP. J. Neurosci.15, 5560–5573 (1995). ArticleCAS Google Scholar
Halpain, S., Hipolito, A. & Saffer, L. Regulation of F-actin stability in dendritic spines by glutamate receptors and calcineurin. J. Neurosci.18, 9835–9844 (1998). ArticleCAS Google Scholar
Korkotian, E. & Segal, M. Release of calcium from stores alters the morphology of dendritic spines in cultured hippocampal neurons. Proc. Natl. Acad. Sci. USA96, 12068–12072 (1999). ArticleCAS Google Scholar
Emptage, N., Bliss, T. V. & Fine, A. Single synaptic events evoke NMDA receptor-mediated release of calcium from internal stores in hippocampal dendritic spines. Neuron22, 115–124 (1999). ArticleCAS Google Scholar
McKinney, R. A., Capogna, M., Durr, R., Gahwiler, B. H. & Thompson, S. M. Miniature synaptic events maintain dendritic spines via AMPA receptor activation. Nat. Neurosci.2, 44–49 (1999). ArticleCAS Google Scholar
Kirov, S. A. & Harris, K. M. Dendrites are more spiny on mature hippocampal neurons when synapses are inactivated. Nat. Neurosci.2, 878–883 (1999). ArticleCAS Google Scholar
Harris, K. M. Calcium from internal stores modifies dendritic spine shape. Proc. Natl. Acad. Sci. USA96, 12213–12215 (1999). ArticleCAS Google Scholar
Lynch, G. & Baudry, M. The biochemistry of memory: a new and specific hypothesis. Science224, 1057–1063 (1984). ArticleCAS Google Scholar
Liao, D. Z., Hessler, N. A. & Malinow, R. Activation of postsynaptically silent synapses during pairing induced LTP in CA1 region of hippocampal slice. Nature375, 400–404 (1995). ArticleCAS Google Scholar
Isaac, J. T. R., Nicoll, R. A. & Malenka, R. C. Evidence for silent synapses. Implications for the expression of LTP. Neuron15, 427–434 (1995). ArticleCAS Google Scholar
Durand, G. M., Kovalchuk, Y. & Konnerth, A. Long-term potentiation and functional synapse induction in developing hippocampus. Nature381, 71–75 (1996). ArticleCAS Google Scholar
Noel, J. et al. Surface expression of AMPA receptors in hippocampal neurons is regulated by an NSF-dependent mechanism. Neuron23, 365–376 (1999). ArticleCAS Google Scholar
Song, I. et al. Interaction of the _N_-ethylmaleimide-sensitive factor with AMPA receptors. Neuron21, 393–400 (1998). ArticleCAS Google Scholar
Osten, P. et al. The AMPA receptor GluR2 C terminus can mediate a reversible, ATP-dependent interaction with NSF and alpha- and beta-SNAPs. Neuron21, 99–110 (1998). ArticleCAS Google Scholar
Lüscher, C. et al. Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron24, 649–658 (1999). Article Google Scholar
Nishimune, A. et al. NSF binding to GluR2 regulates synaptic transmission. Neuron21, 87–97 (1998). ArticleCAS Google Scholar
Lissin, D. V., Carroll, R. C., Nicoll, R. A., Malenka, R. C. & von Zastrow, M. Rapid, activation-induced redistribution of ionotropic glutamate receptors in cultured hippocampal neurons. J. Neurosci.19, 1263–1272 (1999). ArticleCAS Google Scholar
Carroll, R. C. et al. Dynamin-dependent endocytosis of ionotropic glutamate receptors. Proc. Natl. Acad. Sci. USA96, 14112–14117 (1999). ArticleCAS Google Scholar
Shi, S. H. et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science284, 1811–1816 (1999). ArticleCAS Google Scholar
Maletic-Savatic, M. & Malinow, R. Calcium-evoked dendritic exocytosis in cultured hippocampal neurons. Part I: trans-Golgi network-derived organelles undergo regulated exocytosis. J. Neurosci.18, 6803–6813 (1998). ArticleCAS Google Scholar
Lledo, P. M., Zhang, X., Sudhof, T. C., Malenka, R. C. & Nicoll, R. A. Postsynaptic membrane fusion and long-term potentiation. Science279, 399–403 (1998). ArticleCAS Google Scholar
Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science287, 2262–2267 (2000). ArticleCAS Google Scholar
Carroll, R. C., Lissin, D. V., von Zastrow, M., Nicoll, R. A. & Malenka, R. C. Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures. Nat. Neurosci.2, 454–460 (1999). ArticleCAS Google Scholar
Lüthi, A. et al. Hippocampal LTD expression involves a pool of AMPARs regulated by the NSF-GluR2 interaction. Neuron24, 389–399 (1999). Article Google Scholar
Man, H.-Y. et al. Regulation of AMPA receptor–mediated synaptic transmission by clathrin-dependent receptor internalization. Neuron25, 649–662 (2000). ArticleCAS Google Scholar
Wang, Y. T. & Linden, D. J. Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron25, 635–647 (2000). ArticleCAS Google Scholar
Ziff, E. B. Enlightening the postsynaptic density. Neuron19, 1163–1174 (1997). ArticleCAS Google Scholar
Kennedy, M. B. The postsynaptic density at glutamatergic synapses. Trends Neurosci.20, 264–268 (1997). ArticleCAS Google Scholar
Kennedy, M. B. Signal transduction molecules at the glutamatergic postsynaptic membrane. Brain Res. Rev.26, 243–257 (1998). ArticleCAS Google Scholar
Schuster, T., Krug, M. & Wenzel, J. Spinules in axospinous synapses of the rat dentate gyrus: changes in density following long-term potentiation. Brain Res.523, 171–174 (1990). ArticleCAS Google Scholar
Geinisman, Y., deToledo-Morrell, L. & Morrell, F. Induction of long-term potentiation is associated with an increase in the number of axospinous synapses with segmented postsynaptic densities. Brain Res.566, 77–88 (1991). ArticleCAS Google Scholar
Geinisman, Y. Perforated axospinous synapses with multiple, completely partitioned transmission zones: probable structural intermediates in synaptic plasticity. Hippocampus3, 417–433 (1993). ArticleCAS Google Scholar
Toni, N., Buchs, P. A., Nikonenko, I., Bron, C. R. & Muller, D. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature402, 421–425 (1999). ArticleCAS Google Scholar
Buchs, P. A. & Muller, D. Induction of long-term potentiation is associated with major ultrastructural changes of activated synapses. Proc. Natl. Acad. Sci. USA93, 8040–8045 (1996). ArticleCAS Google Scholar
Nusser, Z. et al. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron21, 545–559 (1998). ArticleCAS Google Scholar
Takumi, Y., Ramirez-Leon, V., Laake, P., Rinvik, E. & Ottersen, O. P. Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat. Neurosci.2, 618–624 (1999). ArticleCAS Google Scholar
Desmond, N. L. & Weinberg, R. J. Enhanced expression of AMPA receptor protein at perforated axospinous synapses. Neuroreport9, 857–860 (1998). ArticleCAS Google Scholar
Spacek, J. & Harris, K. M. Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J. Neurosci.17, 190–203 (1997). ArticleCAS Google Scholar
Carlin, R. K. & Siekevitz, P. Plasticity in the central nervous system: do synapses divide? Proc. Natl. Acad. Sci. USA80, 3517–3521 (1983). ArticleCAS Google Scholar
Weeks, A. C., Ivanco, T. L., Leboutillier, J. C., Racine, R. J. & Petit, T. L. Sequential changes in the synaptic structural profile following long-term potentiation in the rat dentate gyrus: I. The intermediate maintenance phase. Synapse31, 97–107 (1999). ArticleCAS Google Scholar
Geinisman, Y., Detoledo-Morrell, L., Morrell, F., Persina, I. S. & Beatty, M. A. Synapse restructuring associated with the maintenance phase of hippocampal long-term potentiation. J. Comp. Neurol.368, 413–423 (1996). ArticleCAS Google Scholar
Trommald, M., Hulleberg, G. & Andersen, P. Long-term potentiation is associated with new excitatory spine synapses on rat dentate granule cells. Learn. Mem.3, 218–228 (1996). ArticleCAS Google Scholar
Sorra, K. E. & Harris, K. M. Stability in synapse number and size at 2 hr after long-term potentiation in hippocampal area CA1. J. Neurosci.18, 658–671 (1998). ArticleCAS Google Scholar
Sorra, K. E., Fiala, J. C. & Harris, K. M. Critical assessment of the involvement of perforations, spinules, and spine branching in hippocampal synapse formation. J. Comp. Neurol.398, 225–240 (1998). ArticleCAS Google Scholar
Engert, F. & Bonhoeffer, T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature399, 66–70 (1999). ArticleCAS Google Scholar
Soderling, T. R. & Derkach, V. A. Postsynaptic protein phosphorylation and LTP. Trends Neurosci.23, 75–80 (2000). ArticleCAS Google Scholar
Barria, A., Derkach, V. & Soderling, T. Identification of the Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate-type glutamate receptor. J. Biol. Chem.272, 32727–32730 (1997). ArticleCAS Google Scholar
Braun, A. P. & Schulman, H. The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. Annu. Rev. Physiol.57, 417–445 (1995). ArticleCAS Google Scholar
Fukunaga, K., Stoppini, L., Miyamoto, E. & Muller, D. Long-term potentiation is associated with an increased activity of Ca2+/calmodulin-dependent protein kinase II. J. Biol. Chem.268, 7863–7867 (1993). CASPubMed Google Scholar
Shen, K. & Meyer, T. Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science284, 162–166 (1999). ArticleCAS Google Scholar
Mammen, A. L., Kameyama, K., Roche, K. W. & Huganir, R. L. Phosphorylation of the alpha-amino-3-hydroxy-5-methylisoxazole4-propionic acid receptor GluR1 subunit by calcium/calmodulin-dependent kinase II. J. Biol. Chem.272, 32528–32533 (1997). ArticleCAS Google Scholar
Lledo, P.-M. et al. Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Proc. Natl. Acad. Sci. USA92, 11175–11179 (1995). ArticleCAS Google Scholar
McGlade-McCulloh, E., Yamamoto, H., Tan, S. E., Brickey, D. A. & Soderling, T. R. Phosphorylation and regulation of glutamate receptors by calcium/calmodulin-dependent protein kinase II. Nature362, 640–642 (1993). ArticleCAS Google Scholar
Derkach, V., Barria, A. & Soderling, T. R. Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc. Natl. Acad. Sci. USA96, 3269–3274 (1999). ArticleCAS Google Scholar
Benke, T. A., Luthi, A., Isaac, J. T. & Collingridge, G. L. Modulation of AMPA receptor unitary conductance by synaptic activity. Nature393, 793–797 (1998). ArticleCAS Google Scholar
Diamond, J. S., Bergles, D. E. & Jahr, C. E. Glutamate release monitored with astrocyte transporter currents during LTP. Neuron21, 425–433 (1998). ArticleCAS Google Scholar
Lüscher, C., Malenka, R. C. & Nicoll, R. A. Monitoring glutamate release during LTP with glial transporter currents. Neuron21, 435–441 (1998). Article Google Scholar
Sanes, J. R. & Lichtman, J. W. Can molecules explain long-term potentiation? Nat. Neurosci.2, 597–604 (1999). ArticleCAS Google Scholar
Missler, M. & Sudhof, T. C. Neurexins: three genes and 1001 products. Trends Genet.14, 20–26 (1998). ArticleCAS Google Scholar
Song, J. Y., Ichtchenko, K., Sudhof, T. C. & Brose, N. Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc. Natl. Acad. Sci. USA96, 1100–1105 (1999). ArticleCAS Google Scholar
Gan, W. B. & Lichtman, J. W. Synaptic segregation at the developing neuromuscular junction. Science282, 1508–1511 (1998). ArticleCAS Google Scholar