Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases (original) (raw)

References

  1. Gangloff, S., McDonald, J.P., Bendixen, C., Arthur, L. & Rothstein, R. The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol. Cell. Biol. 14, 8391– 8398 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  2. Rothstein, R. & Gangloff, S. Hyper-recombination and Bloom's syndrome: microbes again provide clues about cancer. Genome Res. 5, 421–426 ( 1995).
    Article CAS PubMed Google Scholar
  3. Watt, P.M., Hickson, I.D., Borts, R.H. & Louis, E.J. SGS1, a homologue of the Bloom's and Werner's syndrome genes, is required for maintenance of genome stability in Saccharomyces cerevisiae. Genetics 144, 935–945 ( 1996).
    CAS PubMed PubMed Central Google Scholar
  4. Sinclair, D.A., Mills, K. & Guarente, L. Accelerated aging and nucleolar fragmentation in yeast sgs1 mutants. Science 277, 1313– 1316 (1997).
    Article CAS PubMed Google Scholar
  5. Yu, C.E. et al. Positional cloning of the Werner's syndrome gene. Science 272, 258–262 ( 1996).
    Article CAS PubMed Google Scholar
  6. Kitao, S. et al. Mutations in RECQL4 cause a subset of cases of Rothmund-Thomson syndrome. Nature Genet. 22, 82– 84 (1999).
    Article CAS PubMed Google Scholar
  7. Ellis, N.A. et al. The Bloom's syndrome gene product is homologous to RecQ helicases . Cell 83, 655–666 (1995).
    Article CAS PubMed Google Scholar
  8. Aboussekhra, A. et al. RADH, a gene of Saccharomyces cerevisiae encoding a putative DNA helicase involved in DNA repair. Characteristics of radH mutants and sequence of the gene. Nucleic Acids Res. 17, 7211–7219 (1989).
    Article CAS PubMed PubMed Central Google Scholar
  9. Rong, L., Palladino, F., Aguilera, A. & Klein, H.L. The hyper-gene conversion hpr5-1 mutation of Saccharomyces cerevisiae is an allele of the SRS2/RADH gene. Genetics 127, 75–85 ( 1991).
    CAS PubMed PubMed Central Google Scholar
  10. Rong, L. & Klein, H.L. Purification and characterization of the SRS2 DNA helicase of the yeast Saccharomyces cerevisiae. J. Biol. Chem. 268, 1252–1259 (1993).
    CAS PubMed Google Scholar
  11. Frei, C. & Gasser, S.M. The yeast Sgs1p helicase acts upstream of Rad53p in the DNA replication checkpoint and colocalizes with Rad53p in S-phase-specific foci. Genes Dev. 14, 81 –96 (2000).
    CAS PubMed PubMed Central Google Scholar
  12. Murray, J.M., Lindsay, H.D., Munday, C.A. & Carr, A.M. Role of Schizosaccharomyces pombe RecQ homolog, recombination, and checkpoint genes in UV damage tolerance. Mol. Cell. Biol. 17, 6868–6875 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  13. Stewart, E., Chapman, C.R., Al-Khodairy, F., Carr, A.M. & Enoch, T. rqh1+, a fission yeast gene related to the Bloom's and Werner's syndrome genes, is required for reversible S phase arrest. EMBO J. 16, 2682– 2692 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  14. German, J. Bloom syndrome: a mendelian prototype of somatic mutational disease. Medicine 72, 393–406 ( 1993).
    Article CAS PubMed Google Scholar
  15. Lu, J. et al. Human homologues of yeast helicase. Nature 383, 678–679 (1996).
    Article CAS PubMed Google Scholar
  16. Chanet, R., Heude, M., Adjiri, A., Maloisel, L. & Fabre, F. Semidominant mutations in the yeast Rad51 protein and their relationships with the Srs2 helicase. Mol. Cell. Biol. 16, 4782–4789 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  17. Milne, G.T., Ho, T. & Weaver, D.T. Modulation of Saccharomyces cerevisiae DNA double-strand break repair by SRS2 and RAD51. Genetics 139, 1189–1199 (1995).
    CAS PubMed PubMed Central Google Scholar
  18. Schild, D. Suppression of a new allele of the yeast RAD52 gene by overexpression of RAD51, mutations in srs2 and ccr4, or mating-type heterozygosity. Genetics 140, 115– 127 (1995).
    CAS PubMed PubMed Central Google Scholar
  19. Aboussekhra, A., Chanet, R., Adjiri, A. & Fabre, F. Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to procaryotic RecA proteins. Mol. Cell. Biol. 12, 3224 –3234 (1992).
    Article CAS PubMed PubMed Central Google Scholar
  20. Lee, S.K., Johnson, R.E., Yu, S.L., Prakash, L. & Prakash, S. Requirement of yeast SGS1 and SRS2 genes for replication and transcription. Science 286, 2339–2342 (1999).
    Article CAS PubMed Google Scholar
  21. Gangloff, S., de Massy, B., Arthur, L., Rothstein, R. & Fabre, F. The essential role of yeast topoisomerase III in meiosis depends on recombination. EMBO J. 18, 1701 –1711 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  22. Kaytor, M.D., Nguyen, M. & Livingston, D.M. The complexity of the interaction between RAD52 and SRS2. Genetics 140, 1441 –1442 (1995).
    CAS PubMed PubMed Central Google Scholar
  23. Rothstein, R., Michel, B. & Gangloff, S. Replication fork pausing and recombination or “gimme a break”. Genes Dev. 14, 1– 10 (2000).
    CAS PubMed Google Scholar
  24. Sherman, F. & Hicks, J. Micromanipulation and Dissection of Asci 21–37 (Academic, San Diego, 1991).
    Google Scholar
  25. Thomas, B.J. & Rothstein, R. Elevated recombination rates in transcriptionally active DNA. Cell 56, 619 –630 (1989).
    Article CAS PubMed Google Scholar
  26. Smith, J. & Rothstein, R. An allele of RFA1 suppresses _RAD52_-dependent double-strand break repair in Saccharomyces cerevisiae . Genetics 151, 447– 458 (1999).
    CAS PubMed PubMed Central Google Scholar

Download references