Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in mice (original) (raw)

References

  1. Bernfield, M. et al. Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68, 729–777 (1999).
    Article CAS Google Scholar
  2. Tsukamoto, A.S., Grosschedl, R., Guzman, R.C., Parslow, T. & Varmus, H.E. Expression of the _int_-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 55, 619–625 (1988).
    Article CAS Google Scholar
  3. Shackleford, G.M., MacArthur, C.A., Kwan, H.C. & Varmus, H.E. Mouse mammary tumor virus infection accelerates mammary carcinogenesis in Wnt-1 transgenic mice by insertional activation of _int_-2/_Fgf_-3 and hst/_Fgf_-4. Proc. Natl Acad. Sci. USA 90, 740–744 (1993).
    Article CAS Google Scholar
  4. Bernfield, M. et al. Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu. Rev. Cell Biol. 8, 365–393 (1992).
    Article CAS Google Scholar
  5. Kato, M., Saunders, S., Nguyen, H. & Bernfield, M. Loss of cell surface syndecan-1 causes epithelia to transform into anchorage-independent mesenchyme-like cells. Mol. Biol. Cell 6, 559–576 (1995).
    Article CAS Google Scholar
  6. Cardiff, R.D. & Wellings, S.R. The comparative pathology of human and mouse mammary glands. J. Mammary Gland Biol. Neoplasia 4, 105–122 (1999).
    Article CAS Google Scholar
  7. Lee, F.S., Lane, T.F., Kuo, A., Shackleford, G.M. & Leder, P. Insertional mutagenesis identifies a member of the Wnt gene family as a candidate oncogene in the mammary epithelium of int-2/FGF-3 transgenic mice. Proc. Natl Acad. Sci USA 92, 2268–2272 (1995).
    Article CAS Google Scholar
  8. Brown, A.M.C., Wildin, R.S., Prendergast, T.J. & Varmus, H.E. A retrovirus vector expressing the putative mammary oncogene _int_-1 causes partial transformation of a mammary epithelial cell line. Cell 46, 1001–1009 (1986).
    Article CAS Google Scholar
  9. Shimizu, H. et al. Transformation by Wnt family proteins correlates with regulation of β-catenin. Cell Growth Differ. 8, 1349–1358 (1997).
    CAS PubMed Google Scholar
  10. Uren, A. et al. Secreted Frizzled related protein sFRP-1 binds directly to Wingless and is a biphasic modulator of Wnt signaling. J. Biol. Chem. 275, 4374–4382 (2000).
    Article CAS Google Scholar
  11. Reichsman, F., Smith, L. & Cumberledge, S. Glycosaminoglycans can modulate extracellular localization of the wingless protein and promote signal transduction. J. Cell Biol. 135, 819–827 (1996).
    Article CAS Google Scholar
  12. Conrad, H.E. Heparin-Binding Proteins (Academic, London, 1998).
  13. Bradley, R.S. & Brown, A.M.C. The proto-oncogene _int_-1 encodes a secreted protein associated with the extracellular matrix. EMBO J. 9, 1569–1575 (1990).
    Article CAS Google Scholar
  14. Burrus, L.W. & McMahon, A.P. Biochemical analysis of murine Wnt proteins reveals both shared and distinct properties. Exp. Cell Res. 220, 363–373 (1995).
    Article CAS Google Scholar
  15. Jue, S.F., Bradley, R.S., Rudnicki, J.A., Varmus, H.E. & Brown, A.M.C. The mouse Wnt-1 gene can act via a paracrine mechanism in transformation of mammary epithelial cells. Mol. Cell. Biol. 12, 321–328 (1992).
    Article CAS Google Scholar
  16. Haerry, T.E., Heslip, T.R., Marsh, J.L. & O'Connor, M.B. Defects in glucuronate biosynthesis disrupt Wingless signaling in Drosophila. Development 124, 3055–3064 (1997).
    CAS PubMed Google Scholar
  17. Hacker, U., Lin, X. & Perrimon, N. The Drosophila sugarless gene modulates Wingless signaling and encodes an enzyme involved in polysaccharide biosynthesis. Development 124, 3565–3573 (1997).
    CAS Google Scholar
  18. Binari, R.C. et al. Genetic evidence that heparin-like glycosaminoglycans are involved in wingless signaling. Development 124, 2623–2632 (1997).
    CAS PubMed Google Scholar
  19. Tsuda, M. et al. The cell surface proteoglycan Dally regulates Wingless signalling in Drosophila. Nature 400, 276–280 (1999).
    Article CAS Google Scholar
  20. Lin, X. & Perrimon, N. Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling. Nature 400, 281–284 (1999).
    Article CAS Google Scholar
  21. Jackson, S.M. et al. dally, a Drosophila glypican, controls cellular responses to the TGF—related morphogen, Dpp. Development 124, 4113–4120 (1997).
    CAS PubMed Google Scholar
  22. Bellaiche, Y., The, I. & Perrimon, N. Tout-velu is a Drosophila homolog of the putative tumor suppressor EXT-1 and is needed for Hh diffusion. Nature 394, 85–88 (1998).
    Article CAS Google Scholar
  23. Ramakrishna, N.R. & Brown, A.T. Wingless, the Drosophila homolog of the proto-oncogene Wnt-1, can transform mouse mammary epithelial cells. Development 119 (suppl.), 95–103 (1993).
    Google Scholar
  24. Rapraeger, A.C. In the clutches of proteoglycans: how does heparan sulfate regulate FGF binding? Chem. Biol. 2, 645–649 (1995).
    Article CAS Google Scholar
  25. Lin, X., Buff, E.M., Perrimon, N. & Michelson, A.M. Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. Development 126, 3715–3723 (1999).
    CAS PubMed Google Scholar
  26. Jackson, D., Bresnick, J. & Dickson, C. A role for fibroblast growth factor signaling in the lobuloalveolar development of the mammary gland. J. Mammary Gland Biol. Neoplasia 2, 385–392 (1997).
    Article CAS Google Scholar
  27. Guimond, S., Maccarana, M., Olwin, B.B., Lindahl, U. & Rapraeger, A.C. Activating and inhibitory heparin sequences for FGF-2 (b-FGF). Distinct requirements for FGF-1, FGF-2 and FGF-4. J. Biol. Chem. 268, 23906–23914 (1993).
    CAS PubMed Google Scholar
  28. Thomas, K.R., Musci, T.S., Neumann, P.E. & Capecchi, M.R. Swaying is a mutant allele of the proto-oncogene Wnt-1. Cell 67, 969–976 (1991).
    Article CAS Google Scholar
  29. Ugolini, F. et al. Differential expression assay of chromosome 8 genes identifies Frizzled-related protein (FRP-1/FRZB) and fibroblast growth factor receptor-1 (FGFR-1) as candidate breast cancer genes. Oncogene 18, 1903–1910 (1999).
    Article CAS Google Scholar
  30. Pennica, D. et al. WISP genes are members of the connective tissue growth factor family that are up-regulated in Wnt-1 transformed cells and aberrantly expressed in human colon tumors. Proc. Natl Acad. Sci. USA 95, 14717–14722 (1998).
    Article CAS Google Scholar
  31. Jalkanen, M., Rapraeger, A., Saunders, S. & Bernfield, M. Cell surface proteoglycan of mouse mammary epithelial cells is shed by cleavage of its matrix-binding ectodomain from its membrane-associated domain. J. Cell Biol. 105, 3087–3096 (1987).
    Article CAS Google Scholar
  32. Bhanot, P. et al. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382, 225–230 (1996).
    Article CAS Google Scholar

Download references