Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria (original) (raw)
Cheng, H. & Leblond, C.P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. Am. J. Anat.141, 537–561 ( 1974). ArticleCAS Google Scholar
Loeffler, M., Stein, R., Wichmann, H.E., Potten, C.S., Kaur, P. & Chwalinski, S. Intestinal cell proliferation. I. A comprehensive model of steady-state proliferation in the crypt. Cell Tiss. Kinet.19, 627–645 (1986). CAS Google Scholar
Gordon, J.I. Intestinal epithelial differentiation: new insights from chimeric and transgenic mice. J. Cell Biol.108, 1187– 1194 (1989). ArticleCAS Google Scholar
Gordon, J.I., Schmidt, G.H. & Roth, K.A. Studies of intestinal stem cells using normal, chimeric, and transgenic mice. FASEB J.6, 3039– 3050 (1992). ArticleCAS Google Scholar
Boman, H.G. Antibacterial peptides: key components needed in immunity. Cell65, 205–207 ( 1991). ArticleCAS Google Scholar
Boman, H.G. Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol.13, 61–92 ( 1995). ArticleCAS Google Scholar
Hoffmann, J.A., Kafatos, F.C., Janeway, C.A. & Ezekowitz, R.A. Phylogenetic perspectives in innate immunity. Science284, 1313–1318 (1999). ArticleCAS Google Scholar
Lehrer, R.I., Ganz, T. & Selsted, M.E. Defensins: endogenous antibiotic peptides of animal cells . Cell64, 229–230 (1991). ArticleCAS Google Scholar
Ganz, T. & Lehrer, R.I. Antimicrobial peptides of leukocytes . Curr. Opin. Hematol.4, 53– 58 (1997). ArticleCAS Google Scholar
Ganz, T. et al. Defensins. Natural peptide antibiotics of human neutrophils. J. Clin. Invest.76, 1427–1435 (1985). ArticleCAS Google Scholar
Martin, E., Ganz, T. & Lehrer, R.I. Defensins and other endogenous peptide antibiotics of vertebrates. J. Leukocyt. Biol.58, 128– 136 (1995). ArticleCAS Google Scholar
Selsted, M.E. & Harwig, S.S. Determination of the disulfide array in the human defensin HNP-2. A covalently cyclized peptide. J. Biol. Chem.264, 4003–4007 (1989). CASPubMed Google Scholar
Hill, C.P., Yee, J., Selsted, M.E. & Eisenberg, D. Crystal structure of defensin HNP-3, an amphiphilic dimer: mechanisms of membrane permeabilization . Science251, 1481–1485 (1991). ArticleCAS Google Scholar
Pardi, A. et al. Solution structures of the rabbit neutrophil defensin NP-5. J. Mol. Biol.201, 625–636 (1988). ArticleCAS Google Scholar
Schonwetter, B.S., Stolzenberg, E.D. & Zasloff, M.A. Epithelial antibiotics induced at sites of inflammation . Science267, 1645–1648 (1995). ArticleCAS Google Scholar
Goldman, MJ et al. Human β-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell88 , 553–560 (1997). ArticleCAS Google Scholar
Quayle, A.J. et al. Gene expression, immunolocalization, and secretion of human defensin-5 in human female reproductive tract. Am. J. Pathol.152, 1247–1258 (1998). CASPubMedPubMed Central Google Scholar
Valore, E.V. et al. Human β-defensin-1: an antimicrobial peptide of urogenital tissues. J. Clin. Invest.101, 1633– 1642 (1998). ArticleCAS Google Scholar
Bals, R., Goldman, M.J. & Wilson, J.M. Mouse β-defensin 1 is a salt-sensitive antimicrobial peptide present in epithelia of the lung and urogenital tract. Infect. Immun.66, 1225–1232 (1998). CASPubMedPubMed Central Google Scholar
Bals, R. et al. Human β-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. J. Clin. Invest.102, 874–880 (1998). ArticleCAS Google Scholar
Diamond, G. & Bevins, C.L. β-Defensins: endogenous antibiotics of the innate host defense response. Clin. Immunol. Immunopathol.88, 221–225 ( 1998). ArticleCAS Google Scholar
Ghoos, Y. & Vantrappen, G. The cytochemical localization of lysozyme in Paneth cell granules. Histochem. J.3, 175–178 (1971). ArticleCAS Google Scholar
Harwig, S.S.L. et al. Bactericidal properties of murine intestinal phospholipase A2 . J. Clin. Invest.95, 603– 610 (1995). ArticleCAS Google Scholar
Qu, X-D., Lloyd, K.C., Walsh, J.H. & Lehrer, R.I. Secretion of type II phospholipase A2 and cryptdin by rat small intestinal Paneth cells. Infect. Immun.64, 5161– 5165 (1996). CASPubMedPubMed Central Google Scholar
Jones, D.E. & Bevins, C.L. Paneth cells of the human small intestine express an antimicrobial peptide gene. J. Biol. Chem.267, 23216–23225 ( 1992). CASPubMed Google Scholar
Ouellette, A.J. et al. Mouse Paneth cell defensins: primary structures and antibacterial activities of numerous cryptdin isoforms. Infect. Immun.62, 5040–5047 (1994). CASPubMedPubMed Central Google Scholar
Selsted, M.E., Miller, S.I., Henschen, A.H. & Ouellette, A.J. Enteric defensins: antibiotic peptide components of intestinal host defense . J. Cell Biol.118, 929– 936 (1992). ArticleCAS Google Scholar
Eisenhauer, P.B., Harwig, S.S.L. & Lehrer, R.I. Cryptdins: antimicrobial defensins of the murine small intestine. Infect. Immun.60, 3556– 3565 (1992). CASPubMedPubMed Central Google Scholar
Porter, E.M., Liu, L., Oren, A., Anton, P.A. & Ganz, T. Localization of human intestinal defensin 5 in Paneth cell granules. Infect. Immun.65, 2389– 2395 (1997). CASPubMedPubMed Central Google Scholar
Selsted, M.E., Ouellette, A.J. Defensins in granules of phagocytic and non-phagocytic cells. Trends Cell Biol.5, 114–119 (1995). ArticleCAS Google Scholar
Bevins, C.L., Martin-Porter, E., Ganz, T. Defensins and innate host defence of the gastrointestinal tract. Gut45, 911–915 (1999). ArticleCAS Google Scholar
Wilson, C.L. et al. Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science286, 113–117 (1999). ArticleCAS Google Scholar
Satoh, Y., Ishikawa, K., Ono, K. & Vollrath, L. Quantitative light microscopic observations on Paneth cells of germ-free and ex-germ-free Wistar rats. Digestion34, 115– 121 (1986). ArticleCAS Google Scholar
Satoh, Y. & Vollrath, L. Quantitative electron microscopic observations on Paneth cells of germfree and ex-germfree Wistar rats. Anat. Embryol.173, 317–322 (1986). ArticleCAS Google Scholar
Satoh, Y., Habara, Y., Ono, K. & Kanno, T. Carbamyl choline- and catecholamine-induced intracellular calcium dynamics of epithelial cells in mouse ileal crypts. Gastroenterology108, 1345–1356 (1995). ArticleCAS Google Scholar
Cano-Gauci, D.F. et al. In vitro cDNA amplification from individual intestinal crypts: A novel approach to the study of differential gene expression along the crypt-villus axis. Exp. Cell Res.208, 344–349 (1993). ArticleCAS Google Scholar
Fields, P.I., Groisman, E.A. & Heffron, F. A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells. Science243, 1059–1062 (1989). ArticleCAS Google Scholar
Miller, S.I., Kukral, A.M. & Mekalanos, J.J. A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. Proc. Natl Acad. Sci. USA.86, 5054–5058 (1989). ArticleCAS Google Scholar
Garabedian, E.M., Roberts, L.J., McNevin, M.S. & Gordon, J.I. Examining the role of Paneth cells in the small intestine by lineage ablation in transgenic mice. J. Biol. Chem.272, 23729–23740 (1997). ArticleCAS Google Scholar
MacPhee, M. et al. The secretory phospholipase A2 gene is a candidate for the Mom1 locus, a major modifier of Apc _Min_-induced intestinal neoplasia. Cell81, 957– 966 (1995). ArticleCAS Google Scholar
Bals, R. et al. Mouse β-defensin 3 is an inducible antimicrobial peptide expressed in the epithelia of multiple organs. Infect. Immun.67, 3542–3547 (1999). CASPubMedPubMed Central Google Scholar
Aley, S.B., Zimmerman, M., Hetsko, M., Selsted, M.E. & Gillin, F.D. Killing of Giardia lamblia by cryptdins and cationic neutrophil peptides. Infect. Immun.62, 5397–5403 (1994). CASPubMedPubMed Central Google Scholar
Bjerknes, M. & Cheng, H. Methods for the isolation of intact epithelium from the mouse intestine. Anat. Rec.199 , 565–574 (1981). ArticleCAS Google Scholar
Selsted, M.E. Investigational approaches for studying the structures and biological functions of myeloid antimicrobial peptides. Genet. Eng.15, 131–147 (1993). ArticleCAS Google Scholar
Selsted, M.E. & Becker, H.W. Eosin Y: a reversible stain for detecting electrophoretically resolved protein. Anal. Biochem.155, 270–274 ( 1986). ArticleCAS Google Scholar
Wang, M-S.C., Pang, J.S. & Selsted, M.E. Semidry electroblotting of peptides and proteins from acid-urea polyacrylamide gels. Anal. Biochem.253, 225–230 (1997). ArticleCAS Google Scholar
Paulus, U., Loeffler, M., Zeidler, J., Owen, G. & Potten, C.S. The differentiation and lineage development of goblet cells in the murine small intestinal crypt: experimental and modelling studies. J. Cell Sci.106, 473–483 (1993). PubMed Google Scholar