CD91: a receptor for heat shock protein gp96 (original) (raw)
References
Bevan, M.J. Antigen presentation to cytotoxic T lymphocytes in vivo. J. Exp. Med.182, 639–641 (1995). ArticleCAS Google Scholar
Suto, R. & Srivastava, P.K. A mechanism for the specific immunogenicity of heat shock protein - chaperoned peptides. Science269, 1585–1588 ( 1995). ArticleCAS Google Scholar
Srivastava, P.K., Ménoret, A., Basu, S., Binder, R.J. & McQuade, K.L. Heat Shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity8, 657–665 ( 1998). ArticleCAS Google Scholar
Ishii, T. et al. Isolation of MHC class I – restricted tumor antigen peptide and its precursors associated with heat shock proteins hsp70, hsp90, and gp96 . J. Immunol.162, 1303– 1309 (1999). CASPubMed Google Scholar
Nieland, J.D. et al. Chimeric papillomavirus virus-like particles elicit antitumor immunity against the E7 oncoprotein in an HPV16 tumor model. Proc. Natl Acad. Sci. USA95, 1800–1805 (1998). Article Google Scholar
Arnold, D., Faath, S., Rammensee, H. & Schild, H. Cross-priming of minor histocompatibility antigen-specific cytotoxic T cells upon immunization with the heat shock protein gp96. J. Exp. Med.182, 885–889 (1995). ArticleCAS Google Scholar
Breloer, M., Marti, T., Fleischer, B. & von Bonin, A. Isolation of processed, H-2Kb-binding ovalbumin-derived peptides associated with the stress proteins HSP70 and gp96. Eur. J. Immunol.28, 1016–1021 (1998). ArticleCAS Google Scholar
Ménoret, A. & Srivastava, P.K. Association of peptides with the heat shock protein gp96 occurs in vivo and is not a post-cell lysis event. Biochem. Biophys. Res. Commun.262, 813–818 (1999). Article Google Scholar
Tamura, Y., Peng, P., Liu, K., Daou, M. & Srivastava, P.K. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science278, 117–120 (1997). ArticleCAS Google Scholar
Blachere, N.E. et al. Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J. Exp. Med.186, 1183– 1406 (1997). Article Google Scholar
Udono, H., Levey, D.L. & Srivastava, P.K. Cellular requirements for tumor - specific immunity elicited by heat shock proteins: Tumor rejection antigen gp96 primes CD8+ T cells in vivo. Proc. Natl Acad. Sci. USA91, 3077–3081 (1994). ArticleCAS Google Scholar
Srivastava, P.K., Udono, H., Blachere, N.E. & Li, Z. Heat shock proteins transfer peptides during antigen processing and CTL priming . Immunogenetics39, 93– 98 (1994). ArticleCAS Google Scholar
Binder, R.J., Ménoret, A. & Srivastava, P.K. Receptor-dependent and receptor-independent re-presentation of heat-shock protein-chaperoned peptides. Cell Stress Chap.3, 2 (1998). Google Scholar
Arnold-Schild, D. et al. Cutting edge: receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J. Immunol.162, 3757–3760 ( 1999). CASPubMed Google Scholar
Wassenberg, J.J., Dezfulian, C. & Nicchitta, C.V. Receptor mediated and fluid phase pathways for internalization of the ER Hsp90 chaperone GRP94 in murine macrophages. J. Cell Sci.112, 2167–2175 ( 1999). CASPubMed Google Scholar
Singh-Jasuja, H. et al. Cross-Presentation of Glycoprotein 96-associated Antigens on Major Histocompatibility Complex Class I Molecules Requires Receptor-mediated Endocytosis. J. Exp. Med.191, 1965– 1974 (2000). ArticleCAS Google Scholar
Binder, R.J., Harris, M., Menoret, A. & Srivastava, P.K. Saturation, competition and specificity in interaction of heat shock proteins gp96, hsp90 and hsp70 with CD11b+ cells. J. Immunol. (2000) (in the press).
Binder, R.J., Basu, S, Anderson, K.M. & Srivastava, P.K. RAW264.7 but not RAW309Cr.1 cells can re-present HSP-chaperoned peptides. J. Immunol. (2000) (submitted).
Huang, A.Y. et al. The immunodominant major histocompatibility complex class I-restricted antigen of a murine colon tumor derives from an endogenous retroviral gene product. Proc. Natl Acad. Sci. USA93, 9730–9735 (1996). ArticleCAS Google Scholar
Strickland, D.K. et al. Sequence identity between the α2-macroglobulin receptor and low density lipoprotein receptor-related protein suggests that this molecule is a multifunctional receptor. J. Biol. Chem.265, 17401–17404 (1990). CASPubMed Google Scholar
Kristensen, T. et al. Evidence that the newly cloned low-density-lipoprotein receptor related protein (LRP) is the α2-macroglobulin receptor. FEBS Lett.276, 151–155 (1990). ArticleCAS Google Scholar
Van Leuven, F. et al. Molecular cloning and sequencing of the murine α 2-macroglobulin receptor cDNA. Biochim. Biophys. Acta1173, 71–74 (1993). ArticleCAS Google Scholar
O'Connor-McCourt, M.D. & Wakefield, L.M. Latent transforming growth factor β in serum: a specific complex with α2-macroglobulin . J. Biol. Chem.262, 14090– 14099 (1987). CASPubMed Google Scholar
Huang, J.S., Huang, S.S. & Deuel, T.F. Specific covalent binding of platelet-derived growth factor to human plasma α2-macroglobulin. Proc. Natl Acad. Sci. USA81, 342–346 (1984). ArticleCAS Google Scholar
Dennis, P.A., Saksela, O., Harpel, P. & Rifkin, D.B. α 2-macroglobulin is a binding protein for basic fibroblast growth factor . J. Biol. Chem.264, 7210– 7216 (1989). CASPubMed Google Scholar
Orth, K., Madison, E.L., Gething, M.J., Sambrook, J.F. & Herz, J. Complexes of tissue-type plasminogen activator and its serpin inhibitor plasminogen-activator inhibitor type 1 are internalized by means of the low density lipoprotein receptor-related protein/α2-macroglobulin receptor. Proc. Natl Acad. Sci. USA89, 7422–7426 (1992). ArticleCAS Google Scholar
Nykjaer, A. et al. Purified α2-macroglobulin receptor/LDL receptor-related protein binds urokinase.plasminogen activator inhibitor type-1 complex. Evidence that the α2-macroglobulin receptor mediates cellular degradation of urokinase receptor-bound complexes. J. Biol. Chem.267, 14543–14546 (1992). CASPubMed Google Scholar
Jensen, P.E.H. & Pizzo, S.V. Comparison of α 2-macroglobulin receptors from human, baboon, rat, and mouse liver. Biochem. Arch.5, 171–176 (1989). CAS Google Scholar
Maki, R.G., Eddy, R.L., Byers, M., Shows, T.B. & Srivastava, P.K. Mapping of the genes for human endoplasmic reticular HSP gp96/grp94. Somat. Cell Mol. Gen.19, 73–81 (1993). ArticleCAS Google Scholar
Hilliker, C., Van Leuven, F. & Van den Berghe, H. Assignment of the gene coding for the α2 -macroglobulin receptor to mouse chromosome 15 and to human chromosome 12q13-q14 by isotopic and non-isotopic in situ hybridization. Genomics13, 472–474 ( 1992). ArticleCAS Google Scholar
Basu, S, Binder, R.J., Suto, R., Anderson, K.M. & Srivastava, P.K. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a maturation signal to dendritic cells and activate the NF-κB pathway. Int. Immunol. ( 2000) (submitted).
Savill, J., Hogg, N., Ren, Y. & Haslett, C. Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J. Clin. Invest.90, 1513–1522 (1992). ArticleCAS Google Scholar
Fadok, V.A. et al. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature405, 85–90 (2000). ArticleCAS Google Scholar
Matzinger, P. An innate sense of danger. Semin Immunol.10, 399–415 (1998). ArticleCAS Google Scholar
Srivastava, P.K., DeLeo, A.B. & Old, L.J. Tumor rejection antigens of chemically induced sarcomas of inbred mice. Proc. Natl Acad. Sci. USA83, 3407–3411 (1986). ArticleCAS Google Scholar