CD91: a receptor for heat shock protein gp96 (original) (raw)

References

  1. Bevan, M.J. Antigen presentation to cytotoxic T lymphocytes in vivo. J. Exp. Med. 182, 639–641 (1995).
    Article CAS Google Scholar
  2. Suto, R. & Srivastava, P.K. A mechanism for the specific immunogenicity of heat shock protein - chaperoned peptides. Science 269, 1585–1588 ( 1995).
    Article CAS Google Scholar
  3. Srivastava, P.K., Ménoret, A., Basu, S., Binder, R.J. & McQuade, K.L. Heat Shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity 8, 657–665 ( 1998).
    Article CAS Google Scholar
  4. Ishii, T. et al. Isolation of MHC class I – restricted tumor antigen peptide and its precursors associated with heat shock proteins hsp70, hsp90, and gp96 . J. Immunol. 162, 1303– 1309 (1999).
    CAS PubMed Google Scholar
  5. Nieland, J.D. et al. Chimeric papillomavirus virus-like particles elicit antitumor immunity against the E7 oncoprotein in an HPV16 tumor model. Proc. Natl Acad. Sci. USA 95, 1800–1805 (1998).
    Article Google Scholar
  6. Arnold, D., Faath, S., Rammensee, H. & Schild, H. Cross-priming of minor histocompatibility antigen-specific cytotoxic T cells upon immunization with the heat shock protein gp96. J. Exp. Med. 182, 885–889 (1995).
    Article CAS Google Scholar
  7. Breloer, M., Marti, T., Fleischer, B. & von Bonin, A. Isolation of processed, H-2Kb-binding ovalbumin-derived peptides associated with the stress proteins HSP70 and gp96. Eur. J. Immunol. 28, 1016–1021 (1998).
    Article CAS Google Scholar
  8. Ménoret, A. & Srivastava, P.K. Association of peptides with the heat shock protein gp96 occurs in vivo and is not a post-cell lysis event. Biochem. Biophys. Res. Commun. 262, 813–818 (1999).
    Article Google Scholar
  9. Tamura, Y., Peng, P., Liu, K., Daou, M. & Srivastava, P.K. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science 278, 117–120 (1997).
    Article CAS Google Scholar
  10. Blachere, N.E. et al. Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J. Exp. Med. 186, 1183– 1406 (1997).
    Article Google Scholar
  11. Udono, H., Levey, D.L. & Srivastava, P.K. Cellular requirements for tumor - specific immunity elicited by heat shock proteins: Tumor rejection antigen gp96 primes CD8+ T cells in vivo. Proc. Natl Acad. Sci. USA 91, 3077–3081 (1994).
    Article CAS Google Scholar
  12. Srivastava, P.K., Udono, H., Blachere, N.E. & Li, Z. Heat shock proteins transfer peptides during antigen processing and CTL priming . Immunogenetics 39, 93– 98 (1994).
    Article CAS Google Scholar
  13. Binder, R.J., Ménoret, A. & Srivastava, P.K. Receptor-dependent and receptor-independent re-presentation of heat-shock protein-chaperoned peptides. Cell Stress Chap. 3, 2 (1998).
    Google Scholar
  14. Arnold-Schild, D. et al. Cutting edge: receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J. Immunol. 162, 3757–3760 ( 1999).
    CAS PubMed Google Scholar
  15. Wassenberg, J.J., Dezfulian, C. & Nicchitta, C.V. Receptor mediated and fluid phase pathways for internalization of the ER Hsp90 chaperone GRP94 in murine macrophages. J. Cell Sci. 112, 2167–2175 ( 1999).
    CAS PubMed Google Scholar
  16. Singh-Jasuja, H. et al. Cross-Presentation of Glycoprotein 96-associated Antigens on Major Histocompatibility Complex Class I Molecules Requires Receptor-mediated Endocytosis. J. Exp. Med. 191, 1965– 1974 (2000).
    Article CAS Google Scholar
  17. Binder, R.J., Harris, M., Menoret, A. & Srivastava, P.K. Saturation, competition and specificity in interaction of heat shock proteins gp96, hsp90 and hsp70 with CD11b+ cells. J. Immunol. (2000) (in the press).
  18. Binder, R.J., Basu, S, Anderson, K.M. & Srivastava, P.K. RAW264.7 but not RAW309Cr.1 cells can re-present HSP-chaperoned peptides. J. Immunol. (2000) (submitted).
  19. Huang, A.Y. et al. The immunodominant major histocompatibility complex class I-restricted antigen of a murine colon tumor derives from an endogenous retroviral gene product. Proc. Natl Acad. Sci. USA 93, 9730–9735 (1996).
    Article CAS Google Scholar
  20. Strickland, D.K. et al. Sequence identity between the α2-macroglobulin receptor and low density lipoprotein receptor-related protein suggests that this molecule is a multifunctional receptor. J. Biol. Chem. 265, 17401–17404 (1990).
    CAS PubMed Google Scholar
  21. Kristensen, T. et al. Evidence that the newly cloned low-density-lipoprotein receptor related protein (LRP) is the α2-macroglobulin receptor. FEBS Lett. 276, 151–155 (1990).
    Article CAS Google Scholar
  22. Van Leuven, F. et al. Molecular cloning and sequencing of the murine α 2-macroglobulin receptor cDNA. Biochim. Biophys. Acta 1173, 71–74 (1993).
    Article CAS Google Scholar
  23. O'Connor-McCourt, M.D. & Wakefield, L.M. Latent transforming growth factor β in serum: a specific complex with α2-macroglobulin . J. Biol. Chem. 262, 14090– 14099 (1987).
    CAS PubMed Google Scholar
  24. Huang, J.S., Huang, S.S. & Deuel, T.F. Specific covalent binding of platelet-derived growth factor to human plasma α2-macroglobulin. Proc. Natl Acad. Sci. USA 81, 342–346 (1984).
    Article CAS Google Scholar
  25. Dennis, P.A., Saksela, O., Harpel, P. & Rifkin, D.B. α 2-macroglobulin is a binding protein for basic fibroblast growth factor . J. Biol. Chem. 264, 7210– 7216 (1989).
    CAS PubMed Google Scholar
  26. Orth, K., Madison, E.L., Gething, M.J., Sambrook, J.F. & Herz, J. Complexes of tissue-type plasminogen activator and its serpin inhibitor plasminogen-activator inhibitor type 1 are internalized by means of the low density lipoprotein receptor-related protein/α2-macroglobulin receptor. Proc. Natl Acad. Sci. USA 89, 7422–7426 (1992).
    Article CAS Google Scholar
  27. Nykjaer, A. et al. Purified α2-macroglobulin receptor/LDL receptor-related protein binds urokinase.plasminogen activator inhibitor type-1 complex. Evidence that the α2-macroglobulin receptor mediates cellular degradation of urokinase receptor-bound complexes. J. Biol. Chem. 267, 14543–14546 (1992).
    CAS PubMed Google Scholar
  28. Jensen, P.E.H. & Pizzo, S.V. Comparison of α 2-macroglobulin receptors from human, baboon, rat, and mouse liver. Biochem. Arch. 5, 171–176 (1989).
    CAS Google Scholar
  29. Maki, R.G., Eddy, R.L., Byers, M., Shows, T.B. & Srivastava, P.K. Mapping of the genes for human endoplasmic reticular HSP gp96/grp94. Somat. Cell Mol. Gen. 19, 73–81 (1993).
    Article CAS Google Scholar
  30. Hilliker, C., Van Leuven, F. & Van den Berghe, H. Assignment of the gene coding for the α2 -macroglobulin receptor to mouse chromosome 15 and to human chromosome 12q13-q14 by isotopic and non-isotopic in situ hybridization. Genomics 13, 472–474 ( 1992).
    Article CAS Google Scholar
  31. Basu, S, Binder, R.J., Suto, R., Anderson, K.M. & Srivastava, P.K. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a maturation signal to dendritic cells and activate the NF-κB pathway. Int. Immunol. ( 2000) (submitted).
  32. Savill, J., Hogg, N., Ren, Y. & Haslett, C. Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J. Clin. Invest. 90, 1513–1522 (1992).
    Article CAS Google Scholar
  33. Fadok, V.A. et al. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405, 85–90 (2000).
    Article CAS Google Scholar
  34. Matzinger, P. An innate sense of danger. Semin Immunol. 10, 399–415 (1998).
    Article CAS Google Scholar
  35. Srivastava, P.K., DeLeo, A.B. & Old, L.J. Tumor rejection antigens of chemically induced sarcomas of inbred mice. Proc. Natl Acad. Sci. USA 83, 3407–3411 (1986).
    Article CAS Google Scholar

Download references