Pidd, a new death-domain–containing protein, is induced by p53 and promotes apoptosis (original) (raw)

References

  1. Levine, A.J. p53, the cellular gatekeeper for growth and division. Cell 88, 323–331 (1997).
    Article CAS Google Scholar
  2. El-Deiry, W.S., Kern, S., Pietenpol, J.A., Kinzler, K.W. & Vogelstein, B. Definition of a consensus binding site for p53. Nature Genet. 1, 45– 49 (1992).
    Article CAS Google Scholar
  3. Crook, T., Marston, N.J., Sara, E.A. & Vousden, K.H. Transcriptional activation by p53 correlates with suppression of growth but not transformation. Cell 79, 817– 827 (1994).
    Article CAS Google Scholar
  4. Pietenpol, J.A. et al. Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc. Natl Acad. Sci. USA 91, 1998–2002 (1994).
    Article CAS Google Scholar
  5. Michalovitz, D., Halevy, O. & Oren, M. Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. Cell 62, 671–680 (1990).
    Article CAS Google Scholar
  6. Johnson, P., Chung, S. & Benchimol, S. Growth suppression of Friend virus-transformed erythroleukemia cells by p53 protein is accompanied by hemoglobin production and is sensitive to erythropoietin. Mol. Cell. Biol. 13, 1456–1463 (1993).
    Article CAS Google Scholar
  7. Lin, Y. & Benchimol, S. Cytokines inhibit p53-mediated apoptosis but not p53-mediated G1 arrest. Mol. Cell. Biol. 15, 6045–6054 (1995).
    Article CAS Google Scholar
  8. Liang, P. & Pardee, A.B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967–971 ( 1992).
    Article CAS Google Scholar
  9. Kozak, M. The scanning model for translation: an update. J. Cell Biol. 108, 229–241 (1989).
    Article CAS Google Scholar
  10. Kobe, B. & Deisenhofer, J. The leucine-rich repeat: a versatile binding motif. Trends Biochem. Sci. 19, 415–421 (1994).
    Article CAS Google Scholar
  11. El-Deiry, W.S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 ( 1993).
    Article CAS Google Scholar
  12. Donehower, L.A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215– 221 (1992).
    Article CAS Google Scholar
  13. Fu, L., Minden, M.D. & Benchimol, S. Translational regulation of human p53 gene expression . EMBO J. 15, 4392–4401 (1966).
    Article Google Scholar
  14. Resnick-Silverman, L., St. Clair, S., Maurer, M., Zhao, K. & Manfredi, J.J. Identification of a novel class of genomic DNA-binding sites suggests a mechanism for selectivity in target gene activation by the tumor suppressor protein p53. Genes Dev. 12, 2102–2107 ( 1998).
    Article CAS Google Scholar
  15. Diller, L. et al. p53 functions as a cell cycle control protein in osteosarcomas . Mol. Cell. Biol. 10, 5772– 5781 (1990).
    Article CAS Google Scholar
  16. Slingerland, J.M., Jenkins, J.R. & Benchimol, S. The transforming and suppressor functions of p53 alleles: effects of mutations that disrupt phosphorylation, oligomerization and nuclear translocation. EMBO J. 12, 1029– 1037 (1993).
    Article CAS Google Scholar
  17. Soengas M.S. et al. Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 284, 156– 159 (1999).
    Article CAS Google Scholar
  18. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction . Anal. Biochem. 162, 156– 159 (1987).
    Article CAS Google Scholar
  19. Mathew, D.H., Burkard, M.E., Freier, S.M., Wyatt, J.R. & Turner, D.H. Predicting oligonucleotide affinity to nucleic acid targets. RNA 5, 1458– 1469 (1999).
    Article Google Scholar
  20. Barry, E.L.R., Gesek, F.A. & Friedman, P.A. Introduction of antisense oligonucleotides into cells by permeabilization with streptolysin O. Biotechniques 15, 1018–1020 (1993).
    Google Scholar
  21. Stanger, B.Z., Leder, P., Lee, T.H., Kim, E. & Seed, B. RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 81, 513–523 (1995).
    Article CAS Google Scholar
  22. Chinnaiyan, A.M., O'Rourke, K., Tewari, M. & Dixit, V.M. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81, 505– 512 (1995).
    Article CAS Google Scholar
  23. Boldin, M.P. et al. A novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain. J. Biol. Chem. 270, 7795–7798 ( 1995).
    Article CAS Google Scholar
  24. Ahmad, M. et al. CRADD, a novel human apoptotic adaptor molecule for caspase-2, and FasL/tumor necrosis factor receptor-interacting protein RIP. Cancer Res. 57, 615–619 (1997).
    CAS PubMed Google Scholar
  25. Duan, H. & Dixit, V.M. RAIDD is a new ‘death’ adaptor molecule. Nature 385, 86– 89 (1997).
    Article CAS Google Scholar
  26. Deiss, L.P., Feinstein, E., Berissi, H., Cohen, O. & Kimchi, A. Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the γ interferon-induced cell death. Genes Dev. 9, 15– 30 (1995).
    Article CAS Google Scholar

Download references