A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains (original) (raw)

References

  1. Aldrich, M.S. Narcolepsy. N. Engl. J. Med. 323, 389–394 (1990).
    Article CAS Google Scholar
  2. Mignot, E. Genetic and familial aspects of narcolepsy. Neurology 50(Suppl 1), S16–S22 (1998).
    Article CAS Google Scholar
  3. Mignot, E., Hayduk, R., Black, J., Grumet, F.C. & Guilleminault, C. HLA DQB1*0602 is associated with cataplexy in 509 narcoleptic patients. Sleep 11, 1012–1020 (1997).
    Google Scholar
  4. Carlander, B., Eliaou J.F., Billiard M. Autoimmune hypothesis in narcolepsy. Neurophysiol. Clin. 23,15–22 (1993).
    Article CAS Google Scholar
  5. Mignot, E., Tafti, M., Dement, W.C. & Grumet, F.C. Narcolepsy and immunity. Adv. Neuroimmunol. 5, 23–37 (1995).
    Article CAS Google Scholar
  6. de Lecea, L. et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl. Acad. Sci. USA 95, 322–327 (1998).
    Article CAS Google Scholar
  7. Sakurai, T. et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573–585 (1998).
    Article CAS Google Scholar
  8. Peyron, C. et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 18, 9996–10015 (1998).
    Article CAS Google Scholar
  9. Lin, L. et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98, 365–376 (1999).
    Article CAS Google Scholar
  10. Chemelli, R.M. et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98, 437–451 (1999).
    Article CAS Google Scholar
  11. Nishino, S., Ripley, B., Overeem, S., Lammers, G.J. & Mignot, E. Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355, 39–40 (2000).
    Article CAS Google Scholar
  12. Hagan, J.J. et al. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc. Natl. Acad. Sci. USA 96, 10911–10916 (1999).
    Article CAS Google Scholar
  13. Sakurai, T. et al. Structure and function of the human prepro-orexin gene. J. Biol. Chem. 274, 17771–17776 (1999).
    Article CAS Google Scholar
  14. Steegmaier, M. et al. Three novel proteins of the Syntaxin/SNAP-25 family. J. Biol.Chem. 273, 34171–34179 (1998).
    Article CAS Google Scholar
  15. Elias, C.F. et al. Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J. Comp. Neurol. 402, 442–459 (1998).
    Article CAS Google Scholar
  16. Broberger, C., De Lecea, L., Sutcliffe, J.G. & Hokfelt, T. Hypocretin/orexin- and melanin-concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus: relationship to the neuropeptide Y and agouti gene-related protein systems. J. Comp. Neurol. 402, 460–474 (1998).
    Article CAS Google Scholar
  17. Mondal, M.S. et al. Characterization of orexin-A and orexin-B in the microdissected rat brain nuclei and their contents in two obese rat models. Neurosci. Lett. 273, 45–48 (1999).
    Article CAS Google Scholar
  18. Taheri, S., Mahmoodi, M., Opacka-Juffry, J., Ghatei, M.A. & Bloom, S.R. Distribution and quantification of immunoreactive orexin A in rat tissues. FEBS Lett. 457, 157–161 (1999).
    Article CAS Google Scholar
  19. Schmitt, A.B. et al. Dynamics of microglial activation in the spinal cord after cerebral infarction are revealed by expression of MHC class II antigen. Neuropathol. Appl. Neurobiol. 24, 167–176 (1998).
    Article CAS Google Scholar
  20. Kollias, G., Douni, E., Kassiotis, G. & Kontoyiannis, D. The function of tumour necrosis factor and receptors in models of multi- organ inflammation, rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. Ann. Rheum. Dis. 58 Suppl 1, I32–139 (1999).
    Article CAS Google Scholar
  21. Boivin, D.B., Montplaisir, J., Poirier, G. The effects of L-DOPA on periodic leg movements and sleep organization in narcolepsy. Clin. Neuropharmacol. 12, 339–345 (1989).
    Article CAS Google Scholar
  22. Hong, S., Hayduk, R., Lim, J. & Mignot, E. Clinical features in DQB1*0602 positive and negative narcolepsy patients: results from the modafinil clinical trial. Sleep Med. 1, 1–7 (2000).
    Article Google Scholar
  23. Honda, Y., Asaka, A., Tanimura, M. & Furusho, T. in Sleep wake disorders: natural history epidemiology and long-term evolution (ed. C. Guilleminault, E. Lugaresi) (Raven Press, New York, New York, 1983).
    Google Scholar
  24. Yoss, R. & Daly, D. Narcolepsy in children. Pediatrics 25, 1025–1033 (1960).
    CAS PubMed Google Scholar
  25. Guilleminault, C. & Pelayo, R. Narcolepsy in prepubertal children. Ann. Neurol. 43, 135–142 (1998).
    Article CAS Google Scholar
  26. Mignot, E. et al. Heterozygosity at the canarc-1 locus can confer susceptibility for narcolepsy: induction of cataplexy in heterozygous asymptomatic dogs after administration of a combination of drug acting on monoaminergic and cholinergic systems. J. Neurosci. 13, 1057–1064 (1993).
    Article CAS Google Scholar
  27. Karaplis, A.C., Lim, S.K., Baba, H., Arnold, A. & Kronenberg, H.M. Inefficient membrane targeting, translocation and proteolytic processing by signal peptidase of a mutant preproparathyroid hormone protein. J. Biol. Chem. 270, 1629–1635 (1995).
    Article CAS Google Scholar
  28. Ito, M., Jameson, J.L. & Ito, M. Molecular basis of autosomal dominant neurohypophyseal diabetes insipidus. J. Clin. Invest. 99, 1897–1905 (1997).
    Article CAS Google Scholar
  29. Nijenhuis, M., Zalm, R. & Burbach, J.P. Mutations in the vasopressin prohormone involved in diabetes insipidus impair endoplasmic reticulum export but not sorting. J. Biol. Chem. 274, 21200–21208 (1999).
    Article CAS Google Scholar
  30. Gagliardi, P., Bernasconi, S. & Repaske, D. Autosomal dominant neurohypophyseal diabetes insipidus associated with a missense mutation encoding Gly23-Val in Neurophysin II. J. Clin. Endocrinol. Metab. 82, 3643–3646 (1997).
    CAS PubMed Google Scholar
  31. Mignot, E. Perspectives in narcolepsy and hypocretin (orexin) research. Sleep Med. 1,87–90 (2000).
    Article CAS Google Scholar
  32. Kilduff, T.S. & Peyron, C. The hypocretin/orexin ligand-receptor system: implication for sleep and sleep disorders. Trends Neurosci., 23 (8), 359–365.
  33. Juji, T., Satake, M., Honda, Y. & Doi, Y. HLA antigens in Japanese patients with narcolepsy. All the patients were DR2 positive. Tissue Antigens 24, 316–319 (1984).
    Article CAS Google Scholar
  34. Mignot, E. et al. DQB1*0602 and DQA1*0102 (DQ1) are better markers than DR2 for narcolepsy in Caucasian and black Americans. Sleep 17, S60–S67 (1994).
    Article CAS Google Scholar
  35. Nishino, S. & Mignot, E. Pharmacological aspects of human and canine narcolepsy. Prog. Neurobiol. 52, 27–78 (1997).
    Article CAS Google Scholar
  36. Charnay, Y. et al. Mapping of cocaine and amphetamine regulated transcript (CART) mRNA expression in the hypothalamus of elderly human. J. Chem. Neuroanat. 17, 123–128 (1999).
    Article CAS Google Scholar
  37. Mai, J.K., Assheuer, J. & Paxinos, G. Atlas of the Human Brain (Academic Press, San Diego, 1997).
    Google Scholar
  38. Tafti, M. et al. Major histocompatibility class II molecules in the CNS: increased microglial expression at the onset of narcolepsy in canine model. J. Neurosci. 16, 4588–4595 (1996).
    Article CAS Google Scholar

Download references