Control of pre-T cell proliferation and differentiation by the GTPase Rac-1 (original) (raw)
Godfrey, D. I., Kennedy, J., Suda, T. & Zlotnik, A. A developmental pathway involving four phenotypically and functionally distinct subsets of CD3−CD4−CD8− triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J. Immunol.150, 4244–4252 (1993). CASPubMed Google Scholar
Fehling, H. J. & von Boehmer, H. Early αβ T cell development in the thymus of normal and genetically altered mice. Curr. Opin. Immunol.9, 263–275 (1997). ArticleCAS Google Scholar
von Boehmer, H. et al. Pleiotropic changes controlled by the pre-T-cell receptor. Curr. Opin. Immunol.11, 135–142 (1999). ArticleCAS Google Scholar
Jameson, S. C. & Bevan, M. J. T-cell selection. Curr. Opin. Immunol.10, 214–219 (1998). ArticleCAS Google Scholar
Sebzda, E. et al. Selection of the T cell repertoire. Annu. Rev. Immunol.17, 829–874 (1999). ArticleCAS Google Scholar
Rodewald, H. R. et al. FcγRII/II and CD2 expression mark distinct subpopulations of immature CD4-CD8- murine thymocytes: in vivo developmental kinetics and T cell receptor β chain rearrangement status. J. Exp. Med.177, 1072–1092 (1993). Article Google Scholar
Azzam, H. S. et al. CD5 expression is developmentally regulated by T cell receptor (TCR) signals and TCR avidity. J. Exp. Med.188, 2301–2311 (1998). ArticleCAS Google Scholar
Crespo, P., Schuebel, K. E., Ostrom, A. A., Gutkind, J. S. & Bustelo, X. R. Phosphotyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product. Nature385, 169–172 (1997). ArticleCAS Google Scholar
Han, J. et al. Lck regulates Vav activation of members of the Rho family of GTPases. Mol. Cell. Biol.17, 1346–1353 (1997). ArticleCAS Google Scholar
Fischer, K. D. et al. Defective T-cell receptor signaling and positive selection of Vav-deficient CD4+ CD8+ thymocytes. Nature374, 474–477 (1995). ArticleCAS Google Scholar
Tarakhovsky, A. et al. Defective antigen receptor-mediated proliferation of B and T cells in the absence of Vav. Nature374, 467–470 (1995). ArticleCAS Google Scholar
Zhang, R., Alt, F. W., Davidson, L., Orkin, S. H. & Swat, W. Defective signaling through the T- and B-cell antigen receptors in lymphoid cells lacking the vav proto-oncogene. Nature374, 470–473 (1995). ArticleCAS Google Scholar
Turner, M. et al. A requirement for the Rho-family GTP exchange factor Vav in positive and negative selection of thymocytes. Immunity7, 451–460 (1997). ArticleCAS Google Scholar
Acuto, O. & Cantrell, D. T cell activation and the cytoskeleton. Annu. Rev. Immunol.18, 165–184 (2000). ArticleCAS Google Scholar
Dustin, M. L. & Cooper, J. A. The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nature Immunol.1, 23–29 (2000). ArticleCAS Google Scholar
Fischer, K. D. et al. Vav is a regulator of cytoskeletal reorganization mediated by the T-cell receptor. Curr. Biol.8, 554–562 (1998). ArticleCAS Google Scholar
Holsinger, L. J. et al. Defects in actin-cap formation in Vav-deficient mice implicate an actin requirement for lymphocyte signal transduction. Curr. Biol.8, 563–572 (1998). ArticleCAS Google Scholar
Costello, P. S. et al. The Rho-family GTP exchange factor Vav is a critical transducer of T cell receptor signals to the calcium, ERK, and NF-kappaB pathways. Proc. Natl Acad. Sci. USA96, 3035–3040 (1999). ArticleCAS Google Scholar
Kuhne, M. R., Ku, G. & Weiss, A. A guanine nucleotide exchange factor-independent function of Vav1 in transcriptional activation. J. Biol. Chem.275, 2185–2190 (2000). ArticleCAS Google Scholar
Villalba, M., Hernandez, J., Deckert, M., Tanaka, Y. & Altman, M. Vav modulation of the Ras/MEK/ERK signaling pathway plays a role in NFAT activation and CD69 up-regulation. Eur. J. Immunol.30, 1587–1596 (2000). ArticleCAS Google Scholar
Genot, E., Cleverley, S., Henning, S. & Cantrell, D. A. Multiple p21ras effector pathways regulate nuclear factor of activated T cells. EMBO J.15, 3923–3933 (1996). ArticleCAS Google Scholar
Genot, E., Reif, K., Beach, S., Kramer, I. & Cantrell, D. p21ras initiates Rac-1 but not phosphatidyl inositol 3 kinase/PKB, mediated signaling pathways in T lymphocytes. Oncogene17, 1731–1738 (1998). ArticleCAS Google Scholar
Genot, E. M. et al. The T-cell receptor regulates Akt (protein kinase B) via a pathway involving Rac1 and phosphatidylinositol 3-kinase. Mol. Cell. Biol.20, 5469–,5478 (2000). ArticleCAS Google Scholar
Burbelo, P. D., Drechsel, D. & Hall, A. A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases. J. Biol. Chem.270, 29071–29074 (1995). ArticleCAS Google Scholar
Bagrodia, S. & Cerione, R. A. Pak to the future. Trends Cell Biol.9, 350–355 (1999). ArticleCAS Google Scholar
Nobes, C. D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell81, 53–62 (1995). ArticleCAS Google Scholar
Hall, A. Rho GTPases and the actin cytoskeleton. Science279, 509–514 (1998). ArticleCAS Google Scholar
Lamarche, N. et al. Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell87, 519–529 (1996). ArticleCAS Google Scholar
Westwick, J. K. et al. Rac regulation of transformation, gene expression, and actin organization by multiple, PAK-independent pathways. Mol. Cell. Biol.17, 1324–1335 (1997). ArticleCAS Google Scholar
Zhumabekov, T., Corbella, P., Tolaini, M. & Kioussis, D. Improved version of a human CD2 minigene based vector for T cell-specific expression in transgenic mice. J. Immunol. Methods185, 133–140 (1995). ArticleCAS Google Scholar
Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell68, 869–877 (1992). ArticleCAS Google Scholar
Bubeck Wardenburg, J. et al. Regulation of PAK activation and the T cell cytoskeleton by the linker protein SLP-76. Immunity9, 607–616 (1998). ArticleCAS Google Scholar
Swat, W., Shinakai, Y., Cheng, H.-L., Davidson, L. & Alt, F. W. Activated Ras signals differentiation and expansion of CD4+8+ thymocytes. Proc. Natl Acad. Sci. USA93, 4683–4687 (1996). ArticleCAS Google Scholar
Gartner, F. et al. Immature thymocytes employ distinct signaling pathways for allelic exclusion versus differentiation and expansion. Immunity10, 537–546 (1999). ArticleCAS Google Scholar
Ashton-Rickardt, P. G. et al. Evidence for a differential avidity model of T cell selection in the thymus. Cell76, 651–663 (1994). ArticleCAS Google Scholar
Sebzda, E. et al. Positive and negative thymocyte selection induced by different concentrations of a single peptide. Science263, 1615–1618 (1994). ArticleCAS Google Scholar
Evan, G. I., Lewis, G. K., Ramsay, G. & Bishop, J. M. Isolation of monoclonal antibodies specific for human c-Myc proto-oncogene product. Mol. Cell. Biol.5, 3610–3616 (1985). ArticleCAS Google Scholar