Postsynaptic filopodia in muscle cells interact with innervating motoneuron axons (original) (raw)
References
Goodman, C. S. Mechanisms and molecules that control growth cone guidance. Annu. Rev. Neurosci.19, 341–377 (1996). ArticleCAS Google Scholar
Zheng, J. Q., Wan, J. & Poo, M.-M. Essential role of filopodia in chemotropic turning of nerve growth cone induced by a glutamate gradient. J. Neurosci.16, 1140–1149 (1996). ArticleCAS Google Scholar
Kater, S. B. & Rehder, V. The sensory-motor role of growth cone filopodia. Curr. Opin. Neurobiol.5, 68–74 (1995). ArticleCAS Google Scholar
Saitoe, Y., Song, W.-J. & Murakami, F. Preferential termination of corticorubral axons on spine-like dendritic protrusions in developing cat. J. Neurosci.17, 8792–8803 (1997). Article Google Scholar
Harris, K. M. Structure, development, and plasticity of dendritic spines. Curr. Opin. Neurobiol.9, 343–348 (1999). ArticleCAS Google Scholar
Lendvail, B., Stern, E. A., Chen, B. & Svoboda, K. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature404, 876–881 (2000). Article Google Scholar
Wu, G. Y., Zou, D. J., Rajan, I. & Cline, H. Dendritic dynamics in vivo change during neuronal maturation. J. Neurosci.19, 4472–4483 (1999). ArticleCAS Google Scholar
Maletic-Savatic, M., Malinow, R. & Svoboda, K. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science283, 1923–1927 (1999). ArticleCAS Google Scholar
Ziv, N. E. & Smith, S. J. Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron17, 91–102 (1996). ArticleCAS Google Scholar
Fischer, M., Kaech, S., Knutti, D. & Matus, A. Rapid actin-based plasticity in dendritic spines. Neuron20, 847–854 (1998). ArticleCAS Google Scholar
Keshishian, H., Broadie, K., Chiba, A. & Bate, M. The Drosophila neuromuscular junction: a model for studying synaptic development and function. Annu. Rev. Neurosci.19, 545–575 (1996). ArticleCAS Google Scholar
Chiba, A. Early development of Drosophila neuromuscular junction: a model for studying neuronetwork development. Intl. Rev. Neurobiol.43, 1–24 (1999). ArticleCAS Google Scholar
Suzuki, E., Rose, D. & Chiba, A. The ultrastructural interactions of identified pre- and postsynaptic cells during synaptic target recognition in Drosophila embryos. J. Neurobiol.43, 448–459 (2000). Article Google Scholar
Bate, M. The embryonic development of larval muscles in Drosophila. Development110, 791–804 (1990). CASPubMed Google Scholar
Yoshihara, M., Rheuben, M. B. & Kidokoro, Y. Transition from growth cone to functional motor nerve terminal in Drosophila embryos. J. Neurosci.17, 8408–8426 (1997). ArticleCAS Google Scholar
Bate, M. in The Development of Drosophila Melanogaster (eds. Bate, C. M. & Martinez Arias, A.) 1013–1090 (Cold Spring Harbor Press, New York, 1993). Google Scholar
Johansen, J., Halpern, M. E. & Keshishian, H. Axonal guidance and the development of muscle fiber-specific innervation in Drosophila embryos. J. Neurosci.9, 4318–4332 (1989). ArticleCAS Google Scholar
Verkhusha, V. V., Tsukita, S. & Oda, H. Actin dynamics in lamellipodia of migrating border cells in the Drosophila ovary revealed by a GFP-actin fusion protein. FEBS Lett.445, 395–401 (1999). ArticleCAS Google Scholar
Murray, M. J. & Whitington, P. M. Effects of roundabout on growth cone dynamics, filopodial length, and growth cone morphology at the midline and throughout the neuropile. J. Neurosci.19, 7901–7912 (1999). ArticleCAS Google Scholar
Landgraf, M., Bossing, T., Technau, G. M. & Bate, M. The origin, location, and projections of the embryonic abdominal motoneurons of Drosophila. J. Neurosci.17, 9642–9655 (1997). ArticleCAS Google Scholar
Vaessin, H. et al. prospero is expressed in neuronal precursors and encodes a nuclear protein that is involved in the control of axonal outgrowth in Drosophila. Cell67, 941–953 (1991). ArticleCAS Google Scholar
Grabham, P. W. & Goldberg, D. J. Nerve growth factor stimulates the accumulation of β1 integrin at the tips of filopodia in the growth cones of sympathetic neurons. J. Neurosci.17, 5455–5465 (1997). ArticleCAS Google Scholar
Kaufmann, N., Wills, Z. P. & Van Vactor, D. Drosophila Rac1 controls motor axon guidance. Development125, 453–461 (1998). CASPubMed Google Scholar
Ramirez-Weber, F. A. & Kornberg, T. B. Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell97, 599–607 (1999). ArticleCAS Google Scholar
Gao, F. B., Brenman, J. E., Jan, L. Y. & Jan, Y. N. Genes regulating dendritic outgrowth, branching, and routing in Drosophila. Genes Dev.13, 2549–2561 (1999). ArticleCAS Google Scholar
Luo, L. et al. Differential effects of the Rac GTPase on the Purkinje cell axons and dendritic trunks and spines. Nature379, 837–840 (1996). ArticleCAS Google Scholar
Chiba, A. Live visualization of neurons and muscles inside an embryo. Cell Technol.18, 852–853 (1999). Google Scholar
Moriyoshi, K., Richards, L., Akazawa, C., O'Leary, D. & Nakanishi, S. Labeling neural cells using adenoviral gene transfer of membrane-targeted GFP. Neuron16, 255–260 (1996). ArticleCAS Google Scholar
Doe, C. Q., Chu-LaGraff, Q., Wright, D. M. & Scott, M. P. The prospero gene specifies cell fates in the Drosophila central nervous system. Cell65, 451–464 (1991). ArticleCAS Google Scholar
Campos-Ortega, J. A. & Hartenstein, V. The Embryonic Development of Drosophila Melanogaster (Springer, Berlin, 1985). Book Google Scholar
Broadie, K. S. & Bate, M. Development of the embryonic neuromuscular synapse of Drosophila melanogaster. J. Neurosci.13, 144–166 (1993). ArticleCAS Google Scholar
Suzuki, E. & Hirosawa, K. Immunolocalization of a Drosophila phosphatidylinositol transfer protein (rdgB) in normal and rdgA mutant photoreceptor cells with special reference to the subrhabdomeric cisternae. J. Electron Microsc. 43, 183–189 (1994). CAS Google Scholar
Reynolds, E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol.17, 208–212 (1963). ArticleCAS Google Scholar
Wolf, B. & Chiba, A. Axon pathfinding proceeds normally despite disrupted growth cone decisions at CNS midline. Development127, 2001–2009 (2000). CASPubMed Google Scholar
Grenningloh, G., Rehm, E. J. & Goodman, C. S. Genetic analysis of growth cone guidance in Drosophila: fasciclin II functions as a neuronal recognition molecule. Cell67, 45–57 (1991). ArticleCAS Google Scholar