The ubiquitin system (original) (raw)

References

  1. Schoenheimer, R. The Dynamic State of Body Constituents (Harvard University Press, Cambridge, Massachusetts, 1942).
    Google Scholar
  2. Schimke, R.T. & Doyle, D. Control of enzyme levels in animal tissues. Annu. Rev. Biochem. 39, 929–979 (1971).
    Article Google Scholar
  3. Haider, M. & Segal, H.L. Some characteristics of the alanine aminotransferase- and arginase-inactivating system of lysosomes. Arch. Biochem. Biophys. 148, 228–237 (1972).
    Article CAS Google Scholar
  4. Hershko, A. & Tomkins, G.M. Studies on the degradation of tyrosine aminotransferase in hepatoma cells in culture. Influence of the composition of the medium and adenosine triphosphate dependence. J. Biol. Chem. 246, 710–714 (1971).
    CAS Google Scholar
  5. Simpson, M.V. The release of labeled amino acids from proteins in liver slices. J. Biol. Chem. 201, 143–154 (1953).
    CAS Google Scholar
  6. Hershko, A. & Ciechanover, A. Mechanisms of intracellular protein breakdown. Annu. Rev. Biochem. 51, 335–364 (1982).
    Article CAS Google Scholar
  7. Etlinger, J.D. & Goldberg, A.L. A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes. Proc. Natl. Acad. Sci. USA. 74, 54–58 (1977).
    Article CAS Google Scholar
  8. Ciechanover, A., Hod, Y. & Hershko, A. a heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. Biochem. Biophys. Res. Commun. 81, 1100–1105 (1978).
    Article Google Scholar
  9. Wilkinson, K.D., Urban, M.K. & Haas, A.L. Ubiquitin is the ATP-dependent proteolysis factor of rabbit reticulocytes. J. Biol. Chem. 255, 7529–7532 (1980).
    CAS Google Scholar
  10. Goldstein, G. et al. Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. Proc. Natl. Acad. Sci. USA. 72, 11–15 (1975).
    Article CAS Google Scholar
  11. Goldknopf, I.L. & Busch, H. Isopeptide linkage between nonhistone and histone A polypeptides of chromosomal conjugate protein A24. Proc. Natl. Acad. Sci. USA. 74, 864–868 (1977).
    Article CAS Google Scholar
  12. Ciechanover, A., Heller, H., Elias, S., Haas, A. L. & Hershko, A. ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. Proc. Natl. Acad. Sci. USA. 77, 1365–1368 (1980).
    Article CAS Google Scholar
  13. Hershko, A., Ciechanover, A, Heller, H., Haas, A. L. & Rose, I. A. Proposed role of ATP in protein breakdown: conjugation of proteins with multiple chains of the polypeptide of ATP-dependent proteolysis. Proc. Natl. Acad. Sci. USA. 77, 1783–1786 (1980).
    Article CAS Google Scholar
  14. Lam, Y.A., Xu, W., DeMartino, G.N. & Cohen, R.E. Editing of ubiquitin conjugates by an isopeptidase of the 26S proteasome. Nature 385, 737–740 (1997).
    Article CAS Google Scholar
  15. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).
    Article CAS Google Scholar
  16. Hershko, A., Heller, H., Elias, S. & Ciechanover, A. Components of ubiquitin-protein ligase system: resolution, affinity purification and role in protein breakdown. J. Biol. Chem. 258, 8206–8214 (1983).
    CAS Google Scholar
  17. Hershko, A., Heller, A., Eytan, E. & Reiss, Y. The protein binding site of the ubiquitin-protein ligase system. J. Biol. Chem. 261, 11992–11999 (1986).
    CAS PubMed Google Scholar
  18. Hough, R., Pratt, G. & Rechsteiner, M. Ubiquitin-lysozyme conjugates. Identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysates. J. Biol. Chem. 261, 2400–2408 (1986).
    CAS Google Scholar
  19. Hershko, A. Lessons from the discovery of the ubiquitin system. Trends Biochem. Sci. 21, 445–449 (1996).
    Article CAS Google Scholar
  20. Hershko, A., Heller, H., Ganoth, D. & Ciechanover, A. in Protein Turnover and Lysosome Function (eds. Segal, H.L. & Doyle, D.J.) 149–169 (Academic Press, New York, 1978).
    Book Google Scholar
  21. Ciechanover, A., Elias, S., Heller, H., Ferber, S. & Hershko, A. Characterization of the heat-stable polypeptide of the ATP-dependent proteolytic system from reticulocytes. J. Biol. Chem. 255, 7525–7528 (1980).
    CAS Google Scholar
  22. Wilkinson, K.D., Urban, M.K. & Haas, A.L. Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes. J. Biol. Chem. 255, 7529–7532 (1980).
    CAS Google Scholar
  23. Hershko, A. & Heller, H. Occurrence of a polyubiquitin structure in ubiquitin-protein conjugates. Biochem. Biophys. Res. Common. 128, 1079–1086 (1985).
    Article CAS Google Scholar
  24. Chau, V. et al. A multiubiquitin chain is confined to specific Lysine in a targeted short-lived protein. Science 243, 1576–1583 (1989).
    Article CAS Google Scholar
  25. Lipmann, F, Gevers, W., Kleinkauf, H. & Roskoski, R. Jr. Polypeptide synthesis on protein templates: The enzymatic synthesis of gramicidin S and tyrocidine. Adv. Enzymol. Relat. Areas Mol. Biol. 35, 1–34 (1971).
    CAS PubMed Google Scholar
  26. Ciechanover, A., Elias, S., Heller, H. & Hershko, A. “Covalent affinity” purification of ubiquitin activating enzyme. J. Biol. Chem. 257, 2537–2542 (1982).
    Google Scholar
  27. Hershko, A., Eytan, E., Ciechanover, A. & Haas, A.L. Immunochemical analysis of the turnover of ubiquitin-protein conjugates in intact cells: Relationship to the breakdown of abnormal proteins. J. Biol. Chem. 257, 13964–13970 (1982).
    CAS Google Scholar
  28. Finley, D., Ciechanover, A. & Varshavsky, A. . Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell 37, 43–55 (1984).
    Article CAS Google Scholar
  29. Ciechanover, A., Finley D. & Varshavsky, A. Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell 37, 57–66 (1984).
    Article CAS Google Scholar
  30. Ferber, S. & Ciechanover, A. Transfer RNA is required for conjugation of ubiquitin to selective substrates of the ubiquitin- and ATP-dependent proteolytic system. J. Biol. Chem. 261, 3128–3134 (1986).
    CAS PubMed Google Scholar
  31. Ferber, S. & Ciechanover, A. Role of arginine-tRNA in protein degradation by the ubiquitin pathway. Nature 326, 808–811 (1987).
    Article CAS Google Scholar
  32. Varshavsky, A. The N-end rule pathway of protein degradation. Genes Cells 2, 13–28 (1997).
    Article CAS Google Scholar
  33. Hershko, A., Heller, H., Eytan, E., Kaklij, G. & Rose, I.A. Role of α-amino group of protein in ubiquitin-mediated protein breakdown. Proc. Natl. Acad. Sci. USA 81, 7021–7025 (1984).
    Article CAS Google Scholar
  34. Mayer, A. Siegel, N.R., Schwartz, A.L. & Ciechanover, A. Degradation of proteins with acetylated amino termini by the ubiquitin system. Science 244, 1480–1483 (1989).
    Article CAS Google Scholar
  35. Scheffner, M., Werness, B.A., Huibregtse, J.M., Levine, A.J. & Howley, P.M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63, 1129–1136 (1990).
    Article CAS Google Scholar
  36. Glotzer, M., Murray, A.W. & Kirschner M.W. Cyclin is degraded by the ubiquitin pathway. Nature 349, 132–138 (1991).
    Article CAS Google Scholar
  37. Hershko, A., Ganoth, D., Pehrson, J., Palazzo, R.E., & Cohen, L.H. . Methylated ubiquitin inhibits cyclin degradation in clam embryo extracts. J. Biol. Chem. 266, 16376–16379 (1991).
    CAS PubMed Google Scholar
  38. Ciechanover, A. et al. Degradation of nuclear oncoproteins by the ubiquitin system in vitro. Proc. Natl. Acad. Sci. USA 88, 139–143 (1991).
    Article CAS Google Scholar
  39. Ciechanover, A., Orian, A. & Schwartz, A.L.. Ubiquitin-mediated proteolysis: Biological regulation via destruction. BioEssays 22, 442–451 (2000).
    Article CAS Google Scholar
  40. Yaron, A. et al. Inhibition of NF-κB cellular function via specific targeting of the IκBα-ubiquitin ligase. EMBO J. 16, 6486–6494 (1997).
    Article CAS Google Scholar
  41. Butz, K., Denk, C., Ullmann, A., Scheffner, M. & Hoppe-Seyler, F. Induction of apoptosis in human papillomavirus positive cancer cells by peptide aptamers targeting the viral E6 oncoprotein. Proc. Natl. Acad. Sci. USA 97, 6693–6697 (2000).
    Article CAS Google Scholar
  42. Finley, D., Özkaynak, E. & Varshavsky, A. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48, 1035–1046 (1987).
    Article CAS Google Scholar
  43. Jentsch, S., McGrath, J.P. & Varshavsky, A. The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature 329, 131–134 (1987).
    Article CAS Google Scholar
  44. Goebl, M.G. et al. The yeast cell cycle gene CDC34 encodes a ubiquitin-conjugating enzyme. Science 241, 1331–1335 (1988).
    Article CAS Google Scholar
  45. Finley, D., Bartel, B. & Varshavsky, A. The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 338, 394–401 (1989).
    Article CAS Google Scholar
  46. Bachmair, A., Finley, D. & Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179–186 (1986).
    Article CAS Google Scholar
  47. Varshavsky, A. Ubiquitin fusion technique and its descendants. Meth. Enzymol. 327, 578–593 (2000).
    Article CAS Google Scholar
  48. Varshavsky, A. The N-end rule: functions, mysteries, uses. Proc. Natl. Acad. Sci. USA 93, 12142–12149 (1996).
    Article CAS Google Scholar
  49. Johnson, E. S., Ma, P. C., Ota, I. M. & Varshavsky, A. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem. 270, 17442–17456 (1995).
    Article CAS Google Scholar
  50. Suzuki, T. & Varshavsky, A. Degradation signals in the lysine-asparagine sequence space. EMBO J. 18, 6017–6026 (1999).
    Article CAS Google Scholar
  51. Varshavsky, A. The ubiquitin system. Trends Biochem. Sci. 22, 383–387 (1997).
    Article CAS Google Scholar
  52. Xie, Y. & Varshavsky, A. Physical association of ubiquitin ligases and the 26S proteasome. Proc. Natl. Acad. Sci. USA 97, 2497–2502 (2000).
    Article CAS Google Scholar
  53. Johnson, E.S., Gonda, D.K. & Varshavsky, A. Cis-trans recognition and subunit-specific degradation of short-lived proteins. Nature 346, 287–291 (1990).
    Article CAS Google Scholar
  54. Kwon, Y.T. et al. Altered activity, social behavior, and spatial memory in mice lacking the NTAN1p amidase and the asparagine branch of the N-end rule pathway. Mol. Cell. Biol. 20, 4135–4148 (2000).
    Article CAS Google Scholar
  55. Davydov, I.V. & Varshavsky, A. RGS4 is arginylated and degraded by the N-end rule pathway in vitro. J. Biol. Chem. 275, 22931–22941 (2000).
    Article CAS Google Scholar
  56. Byrd, C., Turner, G.C. & Varshavsky, A. The N-end rule pathway controls the import of peptides through degradation of a transcriptional repressor. EMBO J. 17, 269–277 (1998).
    Article CAS Google Scholar
  57. Turner, G., Du, F. & Varshavsky, A. Peptides accelerate their uptake by activating a ubiquitin-dependent proteolytic pathway. Nature 405, 579–582 (2000).
    Article CAS Google Scholar

Download references