Deficiency in caspase-9 or caspase-3 induces compensatory caspase activation (original) (raw)
Vaux, D.L. & Korsmeyer, S.J. Cell death in development. Cell96, 245–254 (1999). ArticleCAS Google Scholar
Thompson, C.B. Apoptosis in the pathogenesis and treatment of disease. Science267, 1455–1462 (1995). Article Google Scholar
Thornberry, N.A. & Lazebnik, Y. Caspases: Enemies within. Science281, 1312–1316 (1998). ArticleCAS Google Scholar
Zheng, T.S. & Flavell, R.A. Divinations and surprises: Genetic analysis of caspase function in mice. Exp. Cell Res.256, 67–73 (2000) ArticleCAS Google Scholar
Luo, X., Budihardjo, I., Zou, H., Slaughter, C. & Wang, X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell84, 481–490 (1998). Article Google Scholar
Li, H., Zhu, H., Xu, C.-J. & Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell94, 491–501 (1998). ArticleCAS Google Scholar
Kuida, K. et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature384, 368–372 (1996). ArticleCAS Google Scholar
Kuida, K. et al. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell94, 325–337 (1998). ArticleCAS Google Scholar
Hakem, R. et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell94, 339–352. (1998). ArticleCAS Google Scholar
Peter, M.E. & Krammer, P.H. Mechanisms of CD95 (APO-1/Fas)-mediated apoptosis. Curr. Opin. Immunol.10, 545–551 (1998). ArticleCAS Google Scholar
Scaffidi, C. et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J.17, 1675–1684 (1998). ArticleCAS Google Scholar
Yin, X.M. et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature400, 886–891 (1999). ArticleCAS Google Scholar
Ogasawara, J. et al. Lethal effect of the anti-Fas antibody in mice. Nature364, 806–809 (1993). ArticleCAS Google Scholar
Rodriguez, I., Matsuura, K., Ody, C., Nagata, S. & Vassalli, P. Systemic injection of a tripeptide inhibits the intracellular activation of CPP32-like proteases in vivo and fully protects mice against Fas-mediated fulminant liver destruction and death. J. Exp. Med.184, 2067–2072 (1996). ArticleCAS Google Scholar
Lacronique, V. et al. Bcl-2 protects from lethal hepatic apoptosis induced by an anti-Fas antibody in mice. Nature Med.2, 80–85 (1996). ArticleCAS Google Scholar
Zheng, T.S. et al., Caspase-3 controls both cytoplasmic and nuclear events associated with Fas-mediated apoptosis in vivo. Proc. Natl. Acad. Sci. USA95, 13618–136238 (1998). ArticleCAS Google Scholar
Slee, E.A. et al. Ordering the cytochrome c-initiated caspase cascade: Hierarchical activation of caspase-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J. Cell Biol.144, 281–292 (1999). ArticleCAS Google Scholar
Yang, J. et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science275, 1129–1132 (1997). ArticleCAS Google Scholar
Kluck, R.M., Bossy-Wetzel, E., Green, D.R. & Newmeyer, D.D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science275, 1132–1136 (1997) ArticleCAS Google Scholar
Srinivasan, A. et al. In situ immunodetection of activated caspase-3 in apoptotic neurons in the developing nervous system. Cell Death Differ.5, 1004–1016 (1998). ArticleCAS Google Scholar
Y. Kouroku et al. Detection of activated Caspase-3 by a cleavage site-directed antiserum during naturally occurring DRG neurons apoptosis. Biochem. Biophys. Res. Comm.247, 780–784 (1998). ArticleCAS Google Scholar
Woo, M. et al. Essential contribution of caspase-3/CPP32 to apoptosis and it associated nuclear changes. Genes Dev.12, 806–819 (1998). ArticleCAS Google Scholar
Janicke, R.U., Sprengart, M.L., Wati, M.R. & Porter, A.G. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J. Biol. Chem.273, 9357–9360 (1998) ArticleCAS Google Scholar
Thornberry, N. A. et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem.272, 17907–17911 (1997). ArticleCAS Google Scholar
Hofmann, K., Bucher, P. & Tshopp, J. The CARD domain: a new apoptotic signaling motif. Trends Biochem. Sci.22, 155–156 (1997). ArticleCAS Google Scholar
Hummler, E. et al. Targeted mutation of the CREB gene: compensation within the CREB/ATF family of transcription factors. Proc. Natl. Acad. Sci. USA91, 5647–5651 (1994). ArticleCAS Google Scholar
Huang, D.C. et al. Activation of Fas by FasL induces apoptosis by a mechanism that cannot be blocked by Bcl-2 or Bcl-xL. Proc. Natl. Acad. Sci. USA96, 14871–14876 (1999). ArticleCAS Google Scholar
Chandler, J.M., Cohen, G.M. & MacFarlane, M. Different subcellular distribution of caspase-3 and caspase-7 following Fas-induced apoptosis in mouse liver. J. Biol. Chem.273, 10815–10818 (1998). ArticleCAS Google Scholar
Woo, M. et al. In vivo evidence that caspase-3 is required for Fas-mediated apoptosis of hepatocytes. J. Immunol.163, 4909–4916 (1999). CASPubMed Google Scholar
Susin, S.A. et al. Mitochondrial release of caspase-2 and -9 during the apoptotic process. J. Exp. Med.189, 381–394 (1999). ArticleCAS Google Scholar
Yoshida, H. et al. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell94, 739–750 (1998). ArticleCAS Google Scholar