Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19ARF) and is amplified in a subset of human breast cancers (original) (raw)

References

  1. Wynford-Thomas, D. Cellular senescence and cancer. J. Pathol. 187, 100–111 (1999).
    Article CAS Google Scholar
  2. Levine, A.J. p53, the cellular gatekeeper for growth and division. Cell 88, 323–333 (1997).
    Article CAS Google Scholar
  3. Serrano, M., Hannon, G.J. & Beach, D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366, 704–707 (1993).
    Article CAS Google Scholar
  4. Ruas, M. & Peters, G. The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim. Biophys. Acta 1378, F115–F177 (1998).
    CAS Google Scholar
  5. Sherr, C.J. Tumor surveillance via the ARF-p53 pathway. Genes Dev. 12, 2984–2991 (1998).
    Article CAS Google Scholar
  6. Sharpless, N.E. & DePinho, R.A. The INK4A/ARF locus and its two gene products. Curr. Opin. Genet. Dev. 9, 22–30 (1999).
    Article CAS Google Scholar
  7. Quelle, D.E., Zindy, F., Ashmun, R.A. & Sherr, C.J. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83, 993–1000 (1995).
    Article CAS Google Scholar
  8. Kamijo, T. et al. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc. Natl Acad. Sci. USA 95, 8292–8297 (1998).
    Article CAS Google Scholar
  9. Pomerantz, J. et al. The Ink4a tumor suppressor gene product p19ARF, interacts with MDM2 and neutralizes MDM2' s inhibition of p53. Cell 92, 713–723 (1998).
    Article CAS Google Scholar
  10. Stott, F.J. et al. The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2. EMBO J. 17, 5001–5014 (1998).
    Article CAS Google Scholar
  11. Zhang, Y., Xiong, Y. & Yarbrough, W.G. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92, 725–734 (1998).
    Article CAS Google Scholar
  12. Weber, J.D., Taylor, L.J., Roussel, M.F., Sherr, C.J. & Bar-Sagi, D. Nucleolar ARF sequesters Mdm2 and activates p53. Nature Cell Biol. 1, 20–26 (1999).
    Article CAS Google Scholar
  13. Zhang, Y. & Xiong, Y. Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol. Cell 3, 579–591 (1999).
    Article CAS Google Scholar
  14. Tao, W. & Levine, A.J. P19ARF stabilizes p53 by blocking nucleo-plasmic shuttling of Mdm2. Proc. Natl Acad. Sci. USA 96, 6937–6941 (1999).
    Article CAS Google Scholar
  15. Sherr, C.J. & Weber, J.D. The ARF/p53 pathway. Curr. Opin. Genet. Dev. 10, 94–99 (2000).
    Article CAS Google Scholar
  16. Eischen C.M., Weber, J.D., Roussel, M.F., Sherr, C.J. & Cleveland, J.L. Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev. 13, 2658–2669 (1999).
    Article CAS Google Scholar
  17. Schmitt, C.A., McCurrach, M.E., de Stanchina, E., Wallace-Brodeur, R.R. & Lowe, S.W. INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev. 13, 2670–2677 (1999).
    Article CAS Google Scholar
  18. Jacobs, J.J.L. et al. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev. 13, 2678–2690 (1999).
    Article CAS Google Scholar
  19. Jacobs, J.J.L., Kieboom, K., Marino, S., DePinho, R.A. & van Lohuizen, M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164–168 (1999).
    Article CAS Google Scholar
  20. Haupt, Y., Bath, M.L., Harris, A.W. & Adams, J.M. Bmi1 transgene induces lymphomas and collaborates with myc in tumorigenesis. Oncogene 8, 3161–3164 (1993).
    CAS Google Scholar
  21. Alkema, M.J., Jacobs, H., van Lohuizen, M. & Berns, A. Perturbation of B and T cell development and predisposition to lymphomagenesis in Eμ-Bmi1 transgenic mice require the Bmi1 RING finger. Oncogene 15, 899–910 (1997).
    Article CAS Google Scholar
  22. Campbell, C., Goodrich, K., Casey, G. & Beatty, B. Cloning and mapping of a human gene (TBX2) sharing a highly conserved protein motif with the Drosophila omb gene. Genomics 28, 255–260 (1995).
    Article CAS Google Scholar
  23. Law, D.J., Gebuhr, T., Garvey, N., Agulnik, S.I. & Silver, L.M. Identification, characterization, and localization to chromosome 17q21–22 of the human TBX2 homolog, member of a conserved developmental gene family. Mamm. Genome 6, 793–797 (1995).
    Article CAS Google Scholar
  24. Papaioannou, V.E. & Silver, L.M. The T-box gene family. Bioessays 20, 9–19 (1998).
    Article CAS Google Scholar
  25. Quelle, D.E. et al. Cloning and characterization of murine p16INK4a and p15INK4b genes. Oncogene 11, 635–645 (1995).
    CAS Google Scholar
  26. Kamijo, T.F. et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91, 649–659 (1997).
    Article CAS Google Scholar
  27. Serrano, M. et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell 85, 27–37 (1996).
    Article CAS Google Scholar
  28. Zindy, F. et al. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 12, 2424–2433 (1998).
    Article CAS Google Scholar
  29. Inoue, K., Roussel, M.F. & Sherr, C.J. Induction of ARF tumor suppressor gene expression and cell cycle arrest by transcription factor DMP1. Proc. Natl Acad. Sci. USA 96, 3993–3998 (1999).
    Article CAS Google Scholar
  30. Bates, S. et al. p14ARF links the tumour suppressors RB and p53. Nature 395,124–125 (1998).
    Article CAS Google Scholar
  31. Robertson, K.D. & Jones, P.A. The human ARF cell cycle regulatory gene promoter is a CpG island which can be silenced by DNA methylation and down-regulated by wild-type p53. Mol. Cell. Biol. 18, 6457–6473 (1998).
    Article CAS Google Scholar
  32. Carreira, S., Dexter, T.J., Yavuzer, U., Easty, D.J. & Goding, C.R. Brachyury-related transcription factor Tbx2 and repression of the melanocyte-specific TRP-1 promoter. Mol. Cell. Biol. 18, 5099–5108 (1998).
    Article CAS Google Scholar
  33. He, M.I., Wen, L., Campbell, C.E., Wu, J.Y. & Rao, Y. Transcription repression by Xenopus ET and its human ortholog TBX3, a gene involved in ulnar-mammary syndrome. Proc. Natl Acad. Sci. USA 96, 10212–10217 (1999).
    Article CAS Google Scholar
  34. Maestro, R. et al. Twist is a potential oncogene that inhibits apoptosis. Genes Dev. 13, 2207–2217 (1999).
    Article CAS Google Scholar
  35. Courjal, F. & Theillet, C. Comparative genomic hybridization analysis of breast tumors with predetermined profiles of DNA amplification. Cancer Res. 57, 4368–4377 (1997).
    CAS Google Scholar
  36. Barlund, M. et al. Increased copy number at 17q22–24 by CGH in breast cancer is due to high-level amplification of two separate regions. Genes Chromosomes Cancer 20, 372–376 (1997).
    Article CAS Google Scholar
  37. Weber, R.G. et al. Analysis of genomic alterations in benign, atypical, and anaplastic meningiomas: toward a genetic model of meningioma progression. Proc. Natl Acad. Sci. USA 94, 14719–14724 (1997).
    Article CAS Google Scholar
  38. Pedeutour, F. et al. Ring 22 chromosomes in dermatofibrosarcoma protuberans are low-level amplifiers of chromosome 17 and 22 sequences. Cancer Res. 55, 2400–2403 (1995).
    CAS Google Scholar
  39. Couch, F.J. et al. Localization of PS6K to chromosomal region 17q23 and determination of its amplification in breast cancer. Cancer Res. 59, 1408–1411 (1999).
    CAS Google Scholar
  40. Cuny, M. et al. Relating genotype and phenotype in breast cancer: an analysis of the prognostic significance of amplification at eight different genes or loci and of p53 mutations. Cancer Res. 60, 1077–1083 (2000).
    CAS Google Scholar
  41. Tanaka, N. et al. Cellular commitment to oncogene-induced transformation or apoptosis is dependent on the transcription factor IRF-1. Cell 77, 829–839 (1994).
    Article CAS Google Scholar
  42. Gibson-Brown, J.J., Agulnik, S.I., Silver, L.M., Niswander, L. & Papaioannou, V.E. Involvement of T-box genes Tbx2-Tbx5 in vertebrate limb specification and development. Development 125, 2499–2509 (1998).
    CAS Google Scholar
  43. Li, L.-H., Nerlov, C., Prendergast, G., MacGregor, D. & Ziff, E.B. c-Myc represses transcription in vivo by a novel mechanism dependent on the initiator element and Myc box II. EMBO J. 13, 4070–4079 (1994).
    Article CAS Google Scholar
  44. Wicking, C., Smyth, I. & Bale, A. The hedgehog signaling pathway in tumorigenesis and development. Oncogene 18, 7844–7851 (1999).
    Article CAS Google Scholar
  45. Miller, J.R., Hocking, A.M., Brown, J.D. & Moon, R.T. Mechanism and function of signal transduction by the Wnt/β-catenin and Wnt/Ca2+ pathways. Oncogene 18, 7860–7872 (1999).
    Article CAS Google Scholar
  46. Nusse, R. & Varmus, H.E. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31, 99–109 (1982).
    Article CAS Google Scholar
  47. Roose, J. et al. Synergy between tumor suppressor APC and the β-catenin-Tcf4 target Tcf1. Science 285, 1923–1926 (1999).
    Article CAS Google Scholar
  48. He, T.-C. et al. Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512 (1998).
    Article CAS Google Scholar
  49. van Lohuizen, M. et al. Identification of cooperating oncogenes in Eμ-myc transgenic mice by provirus tagging. Cell 65, 735–752 (1991).
    Article Google Scholar
  50. Clahsen, P.C. et al. p53 protein accumulation and response to adjuvant chemotherapy in premenopausal women with node-negative early breast cancer. J. Clin. Oncol. 16, 470–479 (1998).
    Article CAS Google Scholar

Download references