Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19ARF) and is amplified in a subset of human breast cancers (original) (raw)
References
Wynford-Thomas, D. Cellular senescence and cancer. J. Pathol.187, 100–111 (1999). ArticleCAS Google Scholar
Levine, A.J. p53, the cellular gatekeeper for growth and division. Cell88, 323–333 (1997). ArticleCAS Google Scholar
Serrano, M., Hannon, G.J. & Beach, D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature366, 704–707 (1993). ArticleCAS Google Scholar
Ruas, M. & Peters, G. The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim. Biophys. Acta1378, F115–F177 (1998). CAS Google Scholar
Sherr, C.J. Tumor surveillance via the ARF-p53 pathway. Genes Dev.12, 2984–2991 (1998). ArticleCAS Google Scholar
Sharpless, N.E. & DePinho, R.A. The INK4A/ARF locus and its two gene products. Curr. Opin. Genet. Dev.9, 22–30 (1999). ArticleCAS Google Scholar
Quelle, D.E., Zindy, F., Ashmun, R.A. & Sherr, C.J. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell83, 993–1000 (1995). ArticleCAS Google Scholar
Kamijo, T. et al. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc. Natl Acad. Sci. USA95, 8292–8297 (1998). ArticleCAS Google Scholar
Pomerantz, J. et al. The Ink4a tumor suppressor gene product p19ARF, interacts with MDM2 and neutralizes MDM2' s inhibition of p53. Cell92, 713–723 (1998). ArticleCAS Google Scholar
Stott, F.J. et al. The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2. EMBO J.17, 5001–5014 (1998). ArticleCAS Google Scholar
Zhang, Y., Xiong, Y. & Yarbrough, W.G. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell92, 725–734 (1998). ArticleCAS Google Scholar
Weber, J.D., Taylor, L.J., Roussel, M.F., Sherr, C.J. & Bar-Sagi, D. Nucleolar ARF sequesters Mdm2 and activates p53. Nature Cell Biol.1, 20–26 (1999). ArticleCAS Google Scholar
Zhang, Y. & Xiong, Y. Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol. Cell3, 579–591 (1999). ArticleCAS Google Scholar
Tao, W. & Levine, A.J. P19ARF stabilizes p53 by blocking nucleo-plasmic shuttling of Mdm2. Proc. Natl Acad. Sci. USA96, 6937–6941 (1999). ArticleCAS Google Scholar
Sherr, C.J. & Weber, J.D. The ARF/p53 pathway. Curr. Opin. Genet. Dev.10, 94–99 (2000). ArticleCAS Google Scholar
Eischen C.M., Weber, J.D., Roussel, M.F., Sherr, C.J. & Cleveland, J.L. Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev.13, 2658–2669 (1999). ArticleCAS Google Scholar
Schmitt, C.A., McCurrach, M.E., de Stanchina, E., Wallace-Brodeur, R.R. & Lowe, S.W. INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev.13, 2670–2677 (1999). ArticleCAS Google Scholar
Jacobs, J.J.L. et al. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev.13, 2678–2690 (1999). ArticleCAS Google Scholar
Jacobs, J.J.L., Kieboom, K., Marino, S., DePinho, R.A. & van Lohuizen, M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature397, 164–168 (1999). ArticleCAS Google Scholar
Haupt, Y., Bath, M.L., Harris, A.W. & Adams, J.M. Bmi1 transgene induces lymphomas and collaborates with myc in tumorigenesis. Oncogene8, 3161–3164 (1993). CAS Google Scholar
Alkema, M.J., Jacobs, H., van Lohuizen, M. & Berns, A. Perturbation of B and T cell development and predisposition to lymphomagenesis in Eμ-Bmi1 transgenic mice require the Bmi1 RING finger. Oncogene15, 899–910 (1997). ArticleCAS Google Scholar
Campbell, C., Goodrich, K., Casey, G. & Beatty, B. Cloning and mapping of a human gene (TBX2) sharing a highly conserved protein motif with the Drosophila omb gene. Genomics28, 255–260 (1995). ArticleCAS Google Scholar
Law, D.J., Gebuhr, T., Garvey, N., Agulnik, S.I. & Silver, L.M. Identification, characterization, and localization to chromosome 17q21–22 of the human TBX2 homolog, member of a conserved developmental gene family. Mamm. Genome6, 793–797 (1995). ArticleCAS Google Scholar
Papaioannou, V.E. & Silver, L.M. The T-box gene family. Bioessays20, 9–19 (1998). ArticleCAS Google Scholar
Quelle, D.E. et al. Cloning and characterization of murine p16INK4a and p15INK4b genes. Oncogene11, 635–645 (1995). CAS Google Scholar
Kamijo, T.F. et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell91, 649–659 (1997). ArticleCAS Google Scholar
Serrano, M. et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell85, 27–37 (1996). ArticleCAS Google Scholar
Zindy, F. et al. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev.12, 2424–2433 (1998). ArticleCAS Google Scholar
Inoue, K., Roussel, M.F. & Sherr, C.J. Induction of ARF tumor suppressor gene expression and cell cycle arrest by transcription factor DMP1. Proc. Natl Acad. Sci. USA96, 3993–3998 (1999). ArticleCAS Google Scholar
Bates, S. et al. p14ARF links the tumour suppressors RB and p53. Nature395,124–125 (1998). ArticleCAS Google Scholar
Robertson, K.D. & Jones, P.A. The human ARF cell cycle regulatory gene promoter is a CpG island which can be silenced by DNA methylation and down-regulated by wild-type p53. Mol. Cell. Biol.18, 6457–6473 (1998). ArticleCAS Google Scholar
Carreira, S., Dexter, T.J., Yavuzer, U., Easty, D.J. & Goding, C.R. Brachyury-related transcription factor Tbx2 and repression of the melanocyte-specific TRP-1 promoter. Mol. Cell. Biol.18, 5099–5108 (1998). ArticleCAS Google Scholar
He, M.I., Wen, L., Campbell, C.E., Wu, J.Y. & Rao, Y. Transcription repression by Xenopus ET and its human ortholog TBX3, a gene involved in ulnar-mammary syndrome. Proc. Natl Acad. Sci. USA96, 10212–10217 (1999). ArticleCAS Google Scholar
Maestro, R. et al. Twist is a potential oncogene that inhibits apoptosis. Genes Dev.13, 2207–2217 (1999). ArticleCAS Google Scholar
Courjal, F. & Theillet, C. Comparative genomic hybridization analysis of breast tumors with predetermined profiles of DNA amplification. Cancer Res.57, 4368–4377 (1997). CAS Google Scholar
Barlund, M. et al. Increased copy number at 17q22–24 by CGH in breast cancer is due to high-level amplification of two separate regions. Genes Chromosomes Cancer20, 372–376 (1997). ArticleCAS Google Scholar
Weber, R.G. et al. Analysis of genomic alterations in benign, atypical, and anaplastic meningiomas: toward a genetic model of meningioma progression. Proc. Natl Acad. Sci. USA94, 14719–14724 (1997). ArticleCAS Google Scholar
Pedeutour, F. et al. Ring 22 chromosomes in dermatofibrosarcoma protuberans are low-level amplifiers of chromosome 17 and 22 sequences. Cancer Res.55, 2400–2403 (1995). CAS Google Scholar
Couch, F.J. et al. Localization of PS6K to chromosomal region 17q23 and determination of its amplification in breast cancer. Cancer Res.59, 1408–1411 (1999). CAS Google Scholar
Cuny, M. et al. Relating genotype and phenotype in breast cancer: an analysis of the prognostic significance of amplification at eight different genes or loci and of p53 mutations. Cancer Res.60, 1077–1083 (2000). CAS Google Scholar
Tanaka, N. et al. Cellular commitment to oncogene-induced transformation or apoptosis is dependent on the transcription factor IRF-1. Cell77, 829–839 (1994). ArticleCAS Google Scholar
Gibson-Brown, J.J., Agulnik, S.I., Silver, L.M., Niswander, L. & Papaioannou, V.E. Involvement of T-box genes Tbx2-Tbx5 in vertebrate limb specification and development. Development125, 2499–2509 (1998). CAS Google Scholar
Li, L.-H., Nerlov, C., Prendergast, G., MacGregor, D. & Ziff, E.B. c-Myc represses transcription in vivo by a novel mechanism dependent on the initiator element and Myc box II. EMBO J.13, 4070–4079 (1994). ArticleCAS Google Scholar
Wicking, C., Smyth, I. & Bale, A. The hedgehog signaling pathway in tumorigenesis and development. Oncogene18, 7844–7851 (1999). ArticleCAS Google Scholar
Miller, J.R., Hocking, A.M., Brown, J.D. & Moon, R.T. Mechanism and function of signal transduction by the Wnt/β-catenin and Wnt/Ca2+ pathways. Oncogene18, 7860–7872 (1999). ArticleCAS Google Scholar
Nusse, R. & Varmus, H.E. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell31, 99–109 (1982). ArticleCAS Google Scholar
Roose, J. et al. Synergy between tumor suppressor APC and the β-catenin-Tcf4 target Tcf1. Science285, 1923–1926 (1999). ArticleCAS Google Scholar
He, T.-C. et al. Identification of c-MYC as a target of the APC pathway. Science281, 1509–1512 (1998). ArticleCAS Google Scholar
van Lohuizen, M. et al. Identification of cooperating oncogenes in Eμ-myc transgenic mice by provirus tagging. Cell65, 735–752 (1991). Article Google Scholar
Clahsen, P.C. et al. p53 protein accumulation and response to adjuvant chemotherapy in premenopausal women with node-negative early breast cancer. J. Clin. Oncol.16, 470–479 (1998). ArticleCAS Google Scholar