The core meiotic transcriptome in budding yeasts (original) (raw)
References
Kupiec, M., Byers, B., Esposito, R.E. & Mitchell, A.P. Meiosis and sporulation. in Saccharomyces cerevisiae 889–1036 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1997). Google Scholar
Freire, R. et al. Human and mouse homologs of Schizosaccharomyces pombe rad1(+) and Saccharomyces cerevisiae RAD17: linkage to checkpoint control and mammalian meiosis. Genes Dev.12, 2560–2573 (1998). ArticleCASPubMedPubMed Central Google Scholar
McKim, K.S. & Hayashi-Hagihara, A. mei-W68 in Drosophila melanogaster encodes a Spo11 homolog: evidence that the mechanism for initiating meiotic recombination is conserved. Genes Dev.12, 2932–2942 (1998). ArticleCASPubMedPubMed Central Google Scholar
Edelmann, W. et al. Mammalian MutS homologue 5 is required for chromosome pairing in meiosis. Nature Genet.21, 123–127 (1999). ArticleCASPubMed Google Scholar
Zalevsky, J., MacQueen, A., Duffy, J., Kemphues, K. & Villeneuve, A. Crossing over during Caenorhabditis elegans meiosis requires a conserved MutS-based pathway that is partially dispensable in budding yeast. Genetics153, 1271–1283 (1999). CASPubMedPubMed Central Google Scholar
Strich, R. et al. UME6 is a key regulator of nitrogen repression and meiotic development. Genes Dev.8, 796–810 (1994). ArticleCASPubMed Google Scholar
Anderson, S.F., Steber, C.M., Esposito, R.E. & Coleman, J.E. UME6, a negative regulator of meiosis in Saccharomyces cerevisiae, contains a C-terminal Zn2Cys6 binuclear cluster that binds the URS1 DNA sequence in a zinc-dependent manner. Protein Sci.4, 1832–1843 (1995). ArticleCASPubMedPubMed Central Google Scholar
Bowdish, K.S., Yuan, H.E. & Mitchell, A.P. Positive control of yeast meiotic genes by the negative regulator UME6. Mol. Cell. Biol.15, 2955–2961 (1995). ArticleCASPubMedPubMed Central Google Scholar
Steber, C.M. & Esposito, R.E. UME6 is a central component of a developmental regulatory switch controlling meiosis-specific gene expression. Proc. Natl Acad. Sci. USA92, 12490–12494 (1995). ArticleCASPubMedPubMed Central Google Scholar
Rubin-Bejerano, I., Mandel, S., Robzyk, K. & Kassir, Y. Induction of meiosis in Saccharomyces cerevisiae depends on conversion of the transcriptional represssor Ume6 to a positive regulator by its regulated association with the transcriptional activator Ime1. Mol. Cell. Biol.16, 2518–2526 (1996). ArticleCASPubMedPubMed Central Google Scholar
Gailus-Durner, V., Xie, J., Chintamaneni, C. & Vershon, A.K. Participation of the yeast activator Abf1 in meiosis-specific expression of the HOP1 gene. Mol. Cell. Biol.16, 2777–2786 (1996). ArticleCASPubMedPubMed Central Google Scholar
Ozsarac, N., Straffon, M.J., Dalton, H.E. & Dawes, I.W. Regulation of gene expression during meiosis in Saccharomyces cerevisiae: SPR3 is controlled by both ABFI and a new sporulation control element. Mol. Cell. Biol.17, 1152–1159 (1997). ArticleCASPubMedPubMed Central Google Scholar
Chu, S. & Herskowitz, I. Gametogenesis in yeast is regulated by a transcriptional cascade dependent on Ndt80. Mol. Cell1, 685–696 (1998). ArticleCASPubMed Google Scholar
Hepworth, S.R., Friesen, H. & Segall, J. NDT80 and the meiotic recombination checkpoint regulate expression of middle sporulation-specific genes in Saccharomyces cerevisiae. Mol. Cell. Biol.18, 5750–5761 (1998). ArticleCASPubMedPubMed Central Google Scholar
Surosky, R.T. & Esposito, R.E. Early meiotic transcripts are highly unstable in Saccharomyces cerevisiae. Mol. Cell. Biol.12, 3948–3958 (1992). ArticleCASPubMedPubMed Central Google Scholar
Chu, S. et al. The transcriptional program of sporulation in budding yeast. Science282, 699–705 (1998). ArticleCASPubMed Google Scholar
Winzeler, E.A. et al. Direct allelic variation scanning of the yeast genome. Science281, 1194–1197 (1998). ArticleCASPubMed Google Scholar
Padmore, R., Cao, L. & Kleckner, N. Temporal comparison of recombination and synaptonemal complex formation during meiosis in S. cerevisiae. Cell66, 1239–1256 (1991). ArticleCASPubMed Google Scholar
Cho, R.J. et al. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell2, 65–73 (1998). ArticleCASPubMed Google Scholar
Wodicka, L., Dong, H., Mittmann, M., Ho, M.H. & Lockhart, D.J. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nature Biotechnol.15, 1359–1367 (1997). ArticleCAS Google Scholar
Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA95, 14863–14868 (1998). ArticleCASPubMedPubMed Central Google Scholar
Atcheson, C.L., DiDomenico, B., Frackman, S., Esposito, R.E. & Elder, R.T. Isolation, DNA sequence, and regulation of a meiosis-specific eukaryotic recombination gene. Proc. Natl Acad. Sci. USA84, 8035–8039 (1987). ArticleCASPubMedPubMed Central Google Scholar
Buckingham, L.E. et al. Nucleotide sequence and promoter analysis of SPO13, a meiosis-specific gene of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA87, 9406–9410 (1990). ArticleCASPubMedPubMed Central Google Scholar
Briza, P., Breitenbach, M., Ellinger, A. & Segall, J. Isolation of two developmentally regulated genes involved in spore wall maturation in Saccharomyces cerevisiae. Genes Dev.4, 1775–1789 (1990). ArticleCASPubMed Google Scholar
Dorsman, J.C. et al. An ARS/silencer binding factor also activates two ribosomal protein genes in yeast. Nucleic Acid Res.17, 4917–4923 (1989). ArticleCASPubMedPubMed Central Google Scholar
Della Seta, F., Treich, I., Buhler, J.M. & Sentenac, A. ABF1 binding sites in yeast RNA polymerase genes. J. Biol. Chem.265, 15168–15175 (1990). CASPubMed Google Scholar
Planta, R.J., Goncalves, P.M. & Mager, W.H. Global regulators of ribosome biosynthesis in yeast. Biochem. Cell Biol.73, 825–834 (1995). ArticleCASPubMed Google Scholar
Rolfes, R.J., Zhang, F. & Hinnebusch, A.G. The transcriptional activators BAS1, BAS2, and ABF1 bind positive regulatory sites as the critical elements for adenine regulation of ADE5,7. J. Biol. Chem.272, 13343–13354 (1997). ArticleCASPubMed Google Scholar
Pierce, M. et al. Transcriptional regulation of the SMK1 mitogen-activated protein kinase gene during meiotic development in Saccharomyces cerevisiae. Mol. Cell. Biol.18, 5970–5980 (1998). ArticleCASPubMedPubMed Central Google Scholar
Sumrada, R.A. & Cooper, T.G. Ubiquitous upstream repression sequences control activation of the inducible arginase gene in yeast. Proc. Natl Acad. Sci. USA84, 3997–4001 (1987). ArticleCASPubMedPubMed Central Google Scholar
Sweet, D.H., Jang, Y.K. & Sancar, G.B. Role of UME6 in transcriptional regulation of a DNA repair gene in Saccharomyces cerevisiae. Mol. Cell. Biol.17, 6223–6235 (1997). ArticleCASPubMedPubMed Central Google Scholar
Hepworth, S.R., Ebisuzaki, L.K. & Segall, J. A 15-base-pair element activates the SPS4 gene midway through sporulation in Saccharomyces cerevisiae. Mol. Cell. Biol.15, 3934–3944 (1995). ArticleCASPubMedPubMed Central Google Scholar
Ross-Macdonald, P. et al. Large-scale analysis of the genome by transposon tagging and gene disruption. Nature402, 413–418 (1999). ArticleCASPubMed Google Scholar
Dujon, B. European Functional Analysis Network (EUROFAN) and the functional analysis of the Saccharomyces cerevisiae genome. Electrophoresis19, 617–624 (1998). ArticleCASPubMed Google Scholar
Covitz, P.A. & Mitchell, A.P. Repression by the yeast meiotic inhibitor RME1. Genes Dev.7, 1598–1608 (1993). ArticleCASPubMed Google Scholar
Esposito, M.S. & Esposito, R.E. The genetic control of sporulation in Saccharomyces. I. The isolation of temperature-sensitive sporulation-deficient mutants. Genetics61, 79–89 (1969). CASPubMedPubMed Central Google Scholar
Esposito, R.E. & Klapholz, S. Meiosis and ascospore development. in The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance (eds Stratern, J.N., Jones, E.W. & Broach, J.R.) 211–287 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1981). Google Scholar
Kaback, D.B. & Feldberg, L.R. Saccharomyces cerevisiae exhibits a sporulation-specific temporal pattern of transcript accumulation. Mol. Cell. Biol.5, 751–761 (1985). ArticleCASPubMedPubMed Central Google Scholar
Strich, R., Woontner, M. & Scott, J. Mutations in ARS1 increase the rate of simple loss of plasmids in Saccharomyces cerevisiae. Yeast2, 169–178 (1986). ArticleCASPubMed Google Scholar
Klapholz, S., Waddell, C.S. & Esposito, R.E. The role of the SPO11 gene in meiotic recombination in yeast. Genetics110, 187–216 (1985). CASPubMedPubMed Central Google Scholar
Bishop, D.K., Park, D., Xu, L. & Kleckner, N. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell69, 439–456 (1992). ArticleCASPubMed Google Scholar
Lockhart, D.J. et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnol.14, 1675–1680 (1996). ArticleCAS Google Scholar