The core meiotic transcriptome in budding yeasts (original) (raw)

References

  1. Kupiec, M., Byers, B., Esposito, R.E. & Mitchell, A.P. Meiosis and sporulation. in Saccharomyces cerevisiae 889–1036 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1997).
    Google Scholar
  2. Freire, R. et al. Human and mouse homologs of Schizosaccharomyces pombe rad1(+) and Saccharomyces cerevisiae RAD17: linkage to checkpoint control and mammalian meiosis. Genes Dev. 12, 2560–2573 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  3. McKim, K.S. & Hayashi-Hagihara, A. mei-W68 in Drosophila melanogaster encodes a Spo11 homolog: evidence that the mechanism for initiating meiotic recombination is conserved. Genes Dev. 12, 2932–2942 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  4. Edelmann, W. et al. Mammalian MutS homologue 5 is required for chromosome pairing in meiosis. Nature Genet. 21, 123–127 (1999).
    Article CAS PubMed Google Scholar
  5. Zalevsky, J., MacQueen, A., Duffy, J., Kemphues, K. & Villeneuve, A. Crossing over during Caenorhabditis elegans meiosis requires a conserved MutS-based pathway that is partially dispensable in budding yeast. Genetics 153, 1271–1283 (1999).
    CAS PubMed PubMed Central Google Scholar
  6. Mitchell, A.P. Control of meiotic gene expression in Saccharomyces cerevisiae. Microbiol. Rev. 58, 56–70 (1994).
    CAS PubMed PubMed Central Google Scholar
  7. Strich, R. et al. UME6 is a key regulator of nitrogen repression and meiotic development. Genes Dev. 8, 796–810 (1994).
    Article CAS PubMed Google Scholar
  8. Anderson, S.F., Steber, C.M., Esposito, R.E. & Coleman, J.E. UME6, a negative regulator of meiosis in Saccharomyces cerevisiae, contains a C-terminal Zn2Cys6 binuclear cluster that binds the URS1 DNA sequence in a zinc-dependent manner. Protein Sci. 4, 1832–1843 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  9. Bowdish, K.S., Yuan, H.E. & Mitchell, A.P. Positive control of yeast meiotic genes by the negative regulator UME6. Mol. Cell. Biol. 15, 2955–2961 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  10. Steber, C.M. & Esposito, R.E. UME6 is a central component of a developmental regulatory switch controlling meiosis-specific gene expression. Proc. Natl Acad. Sci. USA 92, 12490–12494 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  11. Rubin-Bejerano, I., Mandel, S., Robzyk, K. & Kassir, Y. Induction of meiosis in Saccharomyces cerevisiae depends on conversion of the transcriptional represssor Ume6 to a positive regulator by its regulated association with the transcriptional activator Ime1. Mol. Cell. Biol. 16, 2518–2526 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  12. Gailus-Durner, V., Xie, J., Chintamaneni, C. & Vershon, A.K. Participation of the yeast activator Abf1 in meiosis-specific expression of the HOP1 gene. Mol. Cell. Biol. 16, 2777–2786 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  13. Ozsarac, N., Straffon, M.J., Dalton, H.E. & Dawes, I.W. Regulation of gene expression during meiosis in Saccharomyces cerevisiae: SPR3 is controlled by both ABFI and a new sporulation control element. Mol. Cell. Biol. 17, 1152–1159 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  14. Chu, S. & Herskowitz, I. Gametogenesis in yeast is regulated by a transcriptional cascade dependent on Ndt80. Mol. Cell 1, 685–696 (1998).
    Article CAS PubMed Google Scholar
  15. Hepworth, S.R., Friesen, H. & Segall, J. NDT80 and the meiotic recombination checkpoint regulate expression of middle sporulation-specific genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 18, 5750–5761 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  16. Surosky, R.T. & Esposito, R.E. Early meiotic transcripts are highly unstable in Saccharomyces cerevisiae. Mol. Cell. Biol. 12, 3948–3958 (1992).
    Article CAS PubMed PubMed Central Google Scholar
  17. Chu, S. et al. The transcriptional program of sporulation in budding yeast. Science 282, 699–705 (1998).
    Article CAS PubMed Google Scholar
  18. Winzeler, E.A. et al. Direct allelic variation scanning of the yeast genome. Science 281, 1194–1197 (1998).
    Article CAS PubMed Google Scholar
  19. Padmore, R., Cao, L. & Kleckner, N. Temporal comparison of recombination and synaptonemal complex formation during meiosis in S. cerevisiae. Cell 66, 1239–1256 (1991).
    Article CAS PubMed Google Scholar
  20. Cho, R.J. et al. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 2, 65–73 (1998).
    Article CAS PubMed Google Scholar
  21. Wodicka, L., Dong, H., Mittmann, M., Ho, M.H. & Lockhart, D.J. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nature Biotechnol. 15, 1359–1367 (1997).
    Article CAS Google Scholar
  22. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863–14868 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  23. Atcheson, C.L., DiDomenico, B., Frackman, S., Esposito, R.E. & Elder, R.T. Isolation, DNA sequence, and regulation of a meiosis-specific eukaryotic recombination gene. Proc. Natl Acad. Sci. USA 84, 8035–8039 (1987).
    Article CAS PubMed PubMed Central Google Scholar
  24. Buckingham, L.E. et al. Nucleotide sequence and promoter analysis of SPO13, a meiosis-specific gene of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 87, 9406–9410 (1990).
    Article CAS PubMed PubMed Central Google Scholar
  25. Briza, P., Breitenbach, M., Ellinger, A. & Segall, J. Isolation of two developmentally regulated genes involved in spore wall maturation in Saccharomyces cerevisiae. Genes Dev. 4, 1775–1789 (1990).
    Article CAS PubMed Google Scholar
  26. Dorsman, J.C. et al. An ARS/silencer binding factor also activates two ribosomal protein genes in yeast. Nucleic Acid Res. 17, 4917–4923 (1989).
    Article CAS PubMed PubMed Central Google Scholar
  27. Della Seta, F., Treich, I., Buhler, J.M. & Sentenac, A. ABF1 binding sites in yeast RNA polymerase genes. J. Biol. Chem. 265, 15168–15175 (1990).
    CAS PubMed Google Scholar
  28. Planta, R.J., Goncalves, P.M. & Mager, W.H. Global regulators of ribosome biosynthesis in yeast. Biochem. Cell Biol. 73, 825–834 (1995).
    Article CAS PubMed Google Scholar
  29. Rolfes, R.J., Zhang, F. & Hinnebusch, A.G. The transcriptional activators BAS1, BAS2, and ABF1 bind positive regulatory sites as the critical elements for adenine regulation of ADE5,7. J. Biol. Chem. 272, 13343–13354 (1997).
    Article CAS PubMed Google Scholar
  30. Pierce, M. et al. Transcriptional regulation of the SMK1 mitogen-activated protein kinase gene during meiotic development in Saccharomyces cerevisiae. Mol. Cell. Biol. 18, 5970–5980 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  31. Sumrada, R.A. & Cooper, T.G. Ubiquitous upstream repression sequences control activation of the inducible arginase gene in yeast. Proc. Natl Acad. Sci. USA 84, 3997–4001 (1987).
    Article CAS PubMed PubMed Central Google Scholar
  32. Sweet, D.H., Jang, Y.K. & Sancar, G.B. Role of UME6 in transcriptional regulation of a DNA repair gene in Saccharomyces cerevisiae. Mol. Cell. Biol. 17, 6223–6235 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  33. Hepworth, S.R., Ebisuzaki, L.K. & Segall, J. A 15-base-pair element activates the SPS4 gene midway through sporulation in Saccharomyces cerevisiae. Mol. Cell. Biol. 15, 3934–3944 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  34. Ross-Macdonald, P. et al. Large-scale analysis of the genome by transposon tagging and gene disruption. Nature 402, 413–418 (1999).
    Article CAS PubMed Google Scholar
  35. Dujon, B. European Functional Analysis Network (EUROFAN) and the functional analysis of the Saccharomyces cerevisiae genome. Electrophoresis 19, 617–624 (1998).
    Article CAS PubMed Google Scholar
  36. Covitz, P.A. & Mitchell, A.P. Repression by the yeast meiotic inhibitor RME1. Genes Dev. 7, 1598–1608 (1993).
    Article CAS PubMed Google Scholar
  37. Esposito, M.S. & Esposito, R.E. The genetic control of sporulation in Saccharomyces. I. The isolation of temperature-sensitive sporulation-deficient mutants. Genetics 61, 79–89 (1969).
    CAS PubMed PubMed Central Google Scholar
  38. Esposito, R.E. & Klapholz, S. Meiosis and ascospore development. in The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance (eds Stratern, J.N., Jones, E.W. & Broach, J.R.) 211–287 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1981).
    Google Scholar
  39. Kaback, D.B. & Feldberg, L.R. Saccharomyces cerevisiae exhibits a sporulation-specific temporal pattern of transcript accumulation. Mol. Cell. Biol. 5, 751–761 (1985).
    Article CAS PubMed PubMed Central Google Scholar
  40. Strich, R., Woontner, M. & Scott, J. Mutations in ARS1 increase the rate of simple loss of plasmids in Saccharomyces cerevisiae. Yeast 2, 169–178 (1986).
    Article CAS PubMed Google Scholar
  41. Klapholz, S., Waddell, C.S. & Esposito, R.E. The role of the SPO11 gene in meiotic recombination in yeast. Genetics 110, 187–216 (1985).
    CAS PubMed PubMed Central Google Scholar
  42. Bishop, D.K., Park, D., Xu, L. & Kleckner, N. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69, 439–456 (1992).
    Article CAS PubMed Google Scholar
  43. Lockhart, D.J. et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnol. 14, 1675–1680 (1996).
    Article CAS Google Scholar

Download references