c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations (original) (raw)

References

  1. Guerin, M., Barrois, M., Terrier, M.J., Spielmann, M. & Riou, G. Overexpression of either c-myc or c-erbB-2/neu proto-oncogenes in human breast carcinomas: correlation with poor prognosis. Oncogene Res. 3, 21–31 (1988).
    CAS Google Scholar
  2. Varley, J.M., Swallow, J.E., Brammar, W.J., Whittaker, J.L. & Walker, R.A. Alterations to either c-erbB-2(neu) or c-myc proto-oncogenes in breast carcinomas correlate with poor short-term prognosis. Oncogene 1, 423–430 (1987).
    CAS Google Scholar
  3. Gossen, M. et al. Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769 (1995).
    Article CAS Google Scholar
  4. Murphy, W. et al. A translocated human c-myc oncogene is altered in a conserved coding sequence. Proc. Natl. Acad. Sci. USA 83, 2939–2943 (1986).
    Article CAS Google Scholar
  5. Marhin, W.W., Chen, S., Facchini, L.M., Fornace, A.J., Jr. & Penn, L.Z. Myc represses the growth arrest gene gadd45. Oncogene 14, 2825–2834 (1997).
    Article CAS Google Scholar
  6. Wagner, A.J., Meyers, C., Laimins, L.A. & Hay, N. c-myc induces the expression and activity of ornithine decarboxylase. Cell Growth Differ. 4, 879–883 (1993).
    CAS Google Scholar
  7. Pena, A. et al. Regulation of human ornithine decarboxylase expression by the c-Myc.Max protein complex. J. Biol. Chem. 268, 27277–27285 (1993).
    CAS Google Scholar
  8. Bello-Fernandez, C., Packham, G. & Cleveland, J.L. The ornithine decarboxylase gene is a transcriptional target of c-Myc. Proc. Natl. Acad. Sci. USA 90, 7804–7808 (1993).
    Article CAS Google Scholar
  9. Leder, A., Pattengale, P.K., Kuo, A., Stewart, T.A. & Leder, P. Consequences of widespread deregulation of the c-myc gene in transgenic mice: multiple neoplasms and normal development. Cell 45, 485–495 (1986).
    Article CAS Google Scholar
  10. Cardiff, R.D., Sinn, E., Muller, W. & Leder, P. Transgenic oncogene mice. Tumor phenotype predicts genotype. Am. J. Pathol. 139, 495–501 (1991).
    CAS PubMed Central Google Scholar
  11. Coller, H.A. et al. Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc. Natl. Acad. Sci. USA 97, 3260–3265 (2000).
    Article CAS Google Scholar
  12. Nishikura, K. & Murray, J.M. The mechanism of inactivation of the normal c-myc gene locus in human Burkitt lymphoma cells. Oncogene 2, 493–498 (1988).
    CAS Google Scholar
  13. Sinn, E. et al. Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 49, 465–475 (1987).
    Article CAS Google Scholar
  14. Andres, A.C. et al. Ha-ras and c-myc oncogene expression interferes with morphological and functional differentiation of mammary epithelial cells in single and double transgenic mice. Genes Dev. 2, 1486–1495 (1988).
    Article CAS Google Scholar
  15. Chin, L. et al. Essential role for oncogenic ras in tumour maintenance. Nature 400, 468–472 (1999).
    Article CAS Google Scholar
  16. Felsher, D.W. & Bishop, J.M. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol. Cell 4, 199–207 (1999).
    Article CAS Google Scholar
  17. Huettner, C.S., Zhang, P., Van Etten, R.A. & Tenen, D.G. Reversibility of acute B-cell leukaemia induced by BCR-ABL1. Nature Genet. 24, 57–60 (2000).
    Article CAS Google Scholar
  18. Pelengaris, S., Littlewood, T., Khan, M., Elia, G. & Evan, G. Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol. Cell 3, 565–577 (1999).
    Article CAS Google Scholar
  19. Ewald, D. et al. Time-sensitive reversal of hyperplasia in transgenic mice expressing SV40 T antigen. Science 273, 1384–1386 (1996).
    Article CAS Google Scholar
  20. Land, H., Parada, L.F. & Weinberg, R.A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304, 596–602 (1983).
    Article CAS Google Scholar
  21. Bos, J.L. ras oncogenes in human cancer: a review. Cancer Res. 49, 4682–4689 (1989); erratum: 50, 1352 (1990).
    CAS Google Scholar
  22. Zuber, J. et al. A genome-wide survey of ras transformation targets. Nature Genet. 24, 144–152 (2000).
    Article CAS Google Scholar
  23. Miyakis, S., Sourvinos, G. & Spandidos, D.A. Differential expression and mutation of the ras family genes in human breast cancer. Biochem. Biophys. Res. Commun. 251, 609–612 (1998).
    Article CAS Google Scholar
  24. Marquis, S.T. et al. The developmental pattern of Brca1 expression implies a role in differentiation of the breast and other tissues. Nature Genet. 11, 17–26 (1995).
    Article CAS Google Scholar

Download references