Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle (original) (raw)
Brooks, S. & Faulkner, J. Contractile properties of skeletal muscles from young, adult and aged mice. J. Physiol.404, 71–82 (1988). ArticleCAS Google Scholar
Musaro, A. et al. Enhanced expression of myogenic regulatory factors in aging skeletal muscle. Exp. Cell Res.221, 241–248 (1995). ArticleCAS Google Scholar
Nelson, K. The cancer anorexia-cachexia syndrome. Semin. Oncol.27, 64–68 (2000). CASPubMed Google Scholar
Florini, J., Ewton, D. & Coolican, S. Growth hormone and the insulin-like growth factor system in myogenesis. Endocrine Rev.17, 481–517 (1996). CAS Google Scholar
Stewart, C. & Rotwein, P. Growth, differentation, and survival: multiple physiological functions for insulin-like growth factors. Physiol. Rev.76, 1005–1026 (1996). ArticleCAS Google Scholar
Sjogren, K. et al. Liver-derived IGF-1 is the principal source of IGF-1 in blood but is not required for postnatal body growth in mice. Proc. Natl. Acad. Sci. USA96, 7088–7092 (1999). ArticleCAS Google Scholar
Rosenthal, S. & Cheng, Z.Q. Opposing early and late effects of insulin-like growth factor I on differentiation and the cell cycle regulatory retinoblastoma protein in skeletal myoblasts. Proc. Natl. Acad. Sci. USA92, 10307–10311 (1995). ArticleCAS Google Scholar
Engert, J., Berglund, E.B. & Rosenthal, N. Proliferation precedes differentiation in IGF-1 stimulated myogenesis. J. Cell Biol.135, 431–440 (1996). ArticleCAS Google Scholar
Mathews, L. et al. Growth enhancement of transgenic mice expressing human insulin-like growth factor-I. Endocrinology123, 2827–2833 (1988). ArticleCAS Google Scholar
Coleman, M. et al. Myogenic vector expression of insulin-like growth factor I stimulate myocyte differentiation and myofiber hypertrophy in transgenic mice. J. Biol. Chem.270, 12109–12116 (1995). ArticleCAS Google Scholar
Reiss, K. et al. Overexpression of insulin-like growth factor-I in the heart is coupled with myocyte proliferation in transgenic mice. Proc. Natl. Acad. Sci. USA93, 8630–8635 (1996). ArticleCAS Google Scholar
Delaughter, M.C., Taffet, G.E., Fiorotto, M.L., Entman, M.L. & Schwartz, R.J. Local insulin-like growth factor I expression induces physiologic, then pathologic cardiac hypertrophy in transgenic mice. FASEB J.13, 1923–1929 (1999). ArticleCAS Google Scholar
Adamo, M. et al. Structure, expression and regulation of the IGF-1 gene. Adv. Exp. Med. Biol.343, 1–11 (1993). CASPubMed Google Scholar
Grieshammer, U., Sassoon, D. & Rosenthal, N. A transgene target for positional regulators marks early rostrocaudal specification of myogenic lineages. Cell69, 79–93 (1992). ArticleCAS Google Scholar
Musaro, A. & Rosenthal, N. Maturation of the myogenic program is induced by post-mitotic expression of IGF-1. Mol. Cell. Biol.19, 3115–3124 (1999). ArticleCAS Google Scholar
Musaro, A., McKullagh, K.J.A., Naya, F.J., Olson, E.N. & Rosenthal, N. IGF-1 induces skeletal myocyte hypertrophy through calcineurin in assocation with GATA-2 and NF-ATc1. Nature400, 581–585 (1999). ArticleCAS Google Scholar
Semsarian, C. et al. Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signalling pathway. Nature400, 576–581 (1999). ArticleCAS Google Scholar
Molkentin, J. et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell93, 215–228 (1998). ArticleCAS Google Scholar
Lim, H. et al. Reversal of cardiac hypertrophy in transgenic disease models by calcineurin inhibition. J. Mol. Cell. Cardiol.32, 697–709 (2000). ArticleCAS Google Scholar
Chin, E. et al. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev.12, 2499–2509 (1998). ArticleCAS Google Scholar
Naya, F. et al. Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo. J. Biol. Chem.275, 4545–4548 (2000). ArticleCAS Google Scholar
Bigard, X. et al. Calcineurin co-regulates contractile and metabolic components of slow muscle phenotype. J. Biol. Chem.275, 19653–19660 (2000). ArticleCAS Google Scholar
Abbott, K.L., Friday, B.B., Thaloor, D., Murphy, T.J. & Pavlath, G.K. Activation and cellular localization of the cyclosporine A-sensitive transcription factor NF-AT in skeletal muscle cells. Mol. Biol. Cell9, 2905–2916 (1998). ArticleCAS Google Scholar
Passier, R. et al. CaM kinase singaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J. Clin. Invest.105, 1395–1406 (2000). ArticleCAS Google Scholar
Lescaudron, L., Creuzet, S.E., Li, Z., Paulin, D. & Fontaine-Perus, J. Desmin-lacZ transgene expression and regeneration within skeletal muscle transplants. J. Muscle Res. Cell. Motil.18, 631–641 (1997). ArticleCAS Google Scholar
Barton-Davis, E., Shoturma, D.I., Musaro, A., Rosenthal, N. & Sweeney, H.L. Viral mediated expression of IGF-1 blocks the aging-related loss of skeletal muscle function. Proc. Natl. Acad. Sci. USA95, 15603–15607 (1998). ArticleCAS Google Scholar
Barton-Davis, E.R., Shoturma, D.I. & Sweeney, H.L. Contribution of satellite cells to IGF-1 induced hypertrophy of skeletal muscle. Acta Physiol. Scand.167, 301–305 (1999). ArticleCAS Google Scholar
LeRoith, D. & Roberts, C.T., Jr. At the cutting edge. Insulin-like growth factor I (IGF-1): a molecular basis for endocrine versus local action. Mol. Cell. Endocrinol.77, C57–C61 (1991). ArticleCAS Google Scholar
McKoy, G. et al. Expression of insulin growth factor-I splice variants and structural genes in rabbit skeletal muscle induced by stretch and stimulation. J. Physiol.516, 583–592 (1999). ArticleCAS Google Scholar