A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories (original) (raw)

References

  1. Lynch, G., Larson, J., Kelso, S., Barrionuevo, G. & Schottler, F. Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature 305, 719–721 (1983).
    Article CAS Google Scholar
  2. Soderling, T. R. & Derkach, V. A. Postsynaptic protein phosphorylation and LTP. Trends Neurosci. 23, 75–80 (2000).
    Article CAS Google Scholar
  3. Nguyen, P. V., Abel, T. & Kandel, E. R. Requirement of a critical period of transcription for induction of late-phase LTP. Science 256, 1104–1107 (1994).
    Article Google Scholar
  4. Frey, U., Frey, S., Schollmeier, F. & Krug, M. Influence of actinomycin D, an RNA synthesis inhibitor, on rat hippocampal neurons in vivo and in vitro. J. Physiol. (Lond.) 490, 703–711 (1996).
    Article CAS Google Scholar
  5. Bliss, T. V. P. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).
    Article CAS Google Scholar
  6. Frey, U., Krug, M., Reymann, K. G. & Matthies, H. Anisomycin, an inhibitor of protein-synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro. Brain Res. 452, 57–65 (1988).
    Article CAS Google Scholar
  7. Otani, S. & Abraham, W. C. Inhibition of protein synthesis in the dentate gyrus, but not the entorhinal cortex, blocks the maintenance of long-term potentiation in rats. Neurosci. Lett. 106, 175–180 (1989).
    Article CAS Google Scholar
  8. Meiri, N. & Rosenblum, K. Lateral ventricle injection of the protein synthesis inhibitor anisomycin impairs long-term memory in a spatial memory task. Brain Res. 789, 48–55 (1998).
    Article CAS Google Scholar
  9. Squire, L. R. & Barondes, S. H. Memory impairment during prolonged training in mice given inhibitors of cerebral protein synthesis. Brain Res. 56, 215–225 (1973).
    Article CAS Google Scholar
  10. Rosenblum, K., Meiri, N. & Dudai, Y. Taste memory: the role of protein synthesis in gustatory cortex. Behav. Neural Biol. 59, 49–56 (1993).
    Article CAS Google Scholar
  11. Fazeli, M. S., Cobet, J., Dunn, M. J., Dolphin, A. C. & Bliss, T. V. P. Changes in protein synthesis accompanying long-term potentiation in the dentate gyrus in vivo. J. Neurosci. 13, 1346–1353 (1993).
    Article CAS Google Scholar
  12. Davis, S. & Laroche, S. A molecular biological approach to synaptic plasticity and learning. C. R. Acad. Sci. III 321, 97–107 (1998).
    Article CAS Google Scholar
  13. Milbrandt, J. A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science 85, 7857–7861 (1987).
    Google Scholar
  14. Lemaire, P., Revelant, O., Bravo, R. & Charnay, P. Two genes encoding potential transcription factors with identical DNA-binding domains are activated by growth factors in cultured cells. Proc. Natl. Acad. Sci. USA 85, 4691–4695 (1988).
    Article CAS Google Scholar
  15. O'Donovan, K. J., Tourtellotte, W. G., Milbrandt, J. & Baraban, J. M. The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience. Trends Neurosci. 22, 167–173 (1999).
    Article CAS Google Scholar
  16. Cole, A. J., Saffen, D. W., Baraban, J. M. & Worley, P. F. Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 340, 474–476 (1989).
    Article CAS Google Scholar
  17. Wisden, W. et al. Differential expression of immediate early genes in the hippocampus and spinal cord. Neuron 4, 603–604 (1990).
    Article CAS Google Scholar
  18. Richardson, C. L. et al. Correlation between the induction of an immediate early gene, zif268, and long-term potentiation in the dentate gyrus. Brain Res. 580, 147–154 (1992).
    Article CAS Google Scholar
  19. Abraham, W. C., Dragunow, M. & Tate, W. P. The role of immediate early genes in the stabilization of long-term potentiation. Mol. Neurobiol. 5, 297–314 (1991).
    Article CAS Google Scholar
  20. Jones, M. W., French, P., Bliss, T. V. P. & Rosenblum, K. Molecular mechanisms of long-term potentiation in the insular cortex in vivo. J. Neurosci. 19, RC36, 1–8 (1999).
    Article CAS Google Scholar
  21. Hall, J., Thomas, K. L. & Everitt, B. J. Rapid and selective induction of BDNF expression in the hippocampus during contextual learning. Nat. Neurosci. 3, 533–535 (2000).
    Article CAS Google Scholar
  22. Miyashita, Y., Kameyama, M., Hasegawa, I. & Fukushima, T. Consolidation of visual associative long-term memory in the temporal cortex of primates. Neurobiol. Learn. Mem. 70, 197–211 (1998).
    Article CAS Google Scholar
  23. Topilko, P. et al. Multiple pituitary and ovarian defects in Krox-24 (NGFI-A, Egr-1)-targeted mic. Mol. Endocrinol. 12, 107–122 (1998).
    Article CAS Google Scholar
  24. Wolf, H. K. et al. NeuN: a useful neuronal marker for diagnostic histopathology. J. Histochem. Cytochem. 44, 1167–1171 (1996).
    Article CAS Google Scholar
  25. Kosaka, T., Katsumaru, H., Hama, K., Wu, J. Y. & Heizmann, C. W. GABAergic neurons containing the Ca2+-binding protein parvalbumin in the rat hippocampus and dentate gyrus. Brain Res. 419, 119–130 (1987).
    Article CAS Google Scholar
  26. Katz, B. & Miledi, R. The role of calcium in neuromuscular facilitation. J. Physiol. (Lond.) 195, 481–492 (1968).
    Article CAS Google Scholar
  27. Gerlai, R. A new continuous alternation task in T-maze detects hippocampal dysfunction in mice: a strain comparison and lesion study. Behav. Brain Res. 95, 91–101 (1998).
    Article CAS Google Scholar
  28. Rasmussen, M., Barnes, C. A. & McNaughton, B. L. A systematic test of cognitive mapping, working memory and temporal discontiguity theories of hippocampal function. Psychobiology 17, 335–348 (1989).
    Google Scholar
  29. Garcia, J., Kimmeldorf, D. J. & Koelling, R. A. Conditioned aversion to saccharin resulting from exposure to gamma radiation. Science 122, 157–158 (1955).
    CAS PubMed Google Scholar
  30. Strupp, B. J. & Levitsky, D. A. Social transmission of food preference in adult hooded rats (Rattus norvegicus). J. Comp. Physiol. 98, 257–266 (1984).
    Google Scholar
  31. Rampon, C. et al. Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nat. Neurosci. 3, 238–244 (2000).
    Article CAS Google Scholar
  32. Brakeman, P. R. et al. Homer: A protein that selectively binds metabotropic glutamate receptors. Nature 386, 284–288 (1997).
    Article CAS Google Scholar
  33. Kato, A. et al. Novel members of the Vesl/Homer family of PDZ proteins that bind metabotropic glutamate receptors. J. Biol. Chem. 273, 23969–23975 (1998).
    Article CAS Google Scholar
  34. Link, W. et al. Somatodendritic expression of an immediate early gene is regulated by synaptic activity. Proc. Natl. Acad. Sci. USA 92, 5734–5738 (1995).
    Article CAS Google Scholar
  35. Lyford, G. L. et al. Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 14, 433–445 (1995).
    Article CAS Google Scholar
  36. Guzowski, J. F. et al. Inhibition of activity-dependent Arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J. Neurosci. 20, 3993–4001 (2000).
    Article CAS Google Scholar
  37. Walker, D. L. & Gold, P. E. Intrahippocampal administration of both the d- and l- isomers of AP5 disrupts spontaneous alternation behavior and evoked potentials. Behav. Neural Biol. 62, 151–162 (1994).
    Article CAS Google Scholar
  38. Kogan, J. H. et al. Spaced training induces normal long-term memory in CREB mutant mice. Curr. Biol. 7, 1–11 (1996).
    Article Google Scholar
  39. Yin, J., Del Vecchio, M., Zhou, H. & Tully, T. CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell 81, 107–115 (1995).
    Article CAS Google Scholar
  40. Changelian, P. S., Feng, P., King, T. C. & Milbrandt, J. Structure of the NGFI-A gene and detection of upstream sequences responsible for its transcriptional induction by nerve growth factor. Proc. Natl. Acad. Sci. USA 86, 377–381 (1989).
    Article CAS Google Scholar
  41. Sakamoto, K. M. et al. 5′ upstream sequence and genomic structure of the human primary response gene, EGR-1/TIS8. Oncogene 6, 867–871 (1991).
    CAS PubMed Google Scholar
  42. Davis, S., Vanhoutte, P., Pagès, C., Caboche, J. & Laroche, S. The MAPK/ERK cascade targets both Elk-1 and cAMP response element-binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo. J. Neurosci. 20, 4563–4572 (2000).
    Article CAS Google Scholar
  43. Impey, S., Obrietan, K. & Storm, D. R. Making new connections: role of ERK/MAP kinase signaling in neuronal plasticity. Neuron 23, 11–14 (1999).
    Article CAS Google Scholar
  44. Bailey, C. H., Bartsch, D. & Kandel, E. R. Toward a molecular definition of long-term memory storage. Proc. Natl. Acad. Sci. USA 93, 13445–13452 (1996).
    Article CAS Google Scholar
  45. Silva, A. J., Kogan, J. H., Frankland, P. W. & Kida, S. CREB and memory. Annu. Rev. Neurosci. 21, 127–148 (1998).
    Article CAS Google Scholar
  46. Blum, S., Moore, A. N., Adams, F. & Dash, P. K. A mitogen-activated protein kinase cascade in the CA1/CA2 subfield of the dorsal hippocampus is essential for long-term spatial memory. J. Neurosci. 19, 3535–3544 (1999).
    Article CAS Google Scholar
  47. Davis, S., Bliss, T. V. P., Dutrieux, G., Laroche, S. & Errington, M. L. Induction and duration of long-term potentiation in the hippocampus of the freely moving mouse. J. Neurosci. Methods 75, 75–80 (1997).
    Article CAS Google Scholar

Download references