Ultrahigh-resolution ophthalmic optical coherence tomography (original) (raw)

References

  1. Bamber, J.C. & Tristam, M. Diagnostic Ultrasound. in The Physics of Medical Imaging. (ed. Webb, S.) 319–388 (Adam Hilger, Bristol and Philadelphia, 1988).
    Google Scholar
  2. Pavlin, C.J., McWhae, J.A., McGowan, H.D. & Foster, F.S. Ultrasound biomicroscopy of anterior segment tumors. Ophthalmology 99, 1220–1228 (1992).
    Article CAS Google Scholar
  3. Masters, B.R. & Thaer, A.A. Real-time scanning slit confocal microscopy of the in vivo human cornea. Appl. Opt. 33, 695–701 (1994).
    Article CAS Google Scholar
  4. Webb, R.H., Hughes, G.W. & Pomerantzeff, O. Flying spot TV ophthalmoscope. Appl. Opt. 19, 2991–2997 (1980).
    Article CAS Google Scholar
  5. Bille, J.F., Dreher, A.W. & Zinser, G. Scanning laser tomography of the living human eye. in Noninvasive Diagnostic Techniques in Ophthalmology. (ed. Master, B.R.) 528–547 (Springer Verlag, New York, 1990).
    Chapter Google Scholar
  6. Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991).
    Article CAS Google Scholar
  7. Puliafito, C.A., Hee, M.R., Schuman, J.S. & Fujimoto, J.G. in Optical Coherence Tomography of Ocular Disease. (Slack, Thorofare, New Jersey, 1995).
    Google Scholar
  8. Youngquist, R.C., Carr, S. & Davies, D.E.N. Optical coherence domain reflectometry: A new optical evaluation technique. Opt. Lett. 12, 158–160 (1987).
    Article CAS Google Scholar
  9. Takada, K., Yokohama, I., Chida, K. & Noda, J. New measurement system for fault location in optic waveguide devices based on an interferometric technique. App. Opt. 26, 1603–1606 (1987).
    Article CAS Google Scholar
  10. Fercher, A.F., Hitzenberger, C.K., Drexler, W., Kamp, G. & Sattmann, H. In vivo optical coherence tomography. Am. J. Ophthalmol. 116, 113–114 (1993).
    Article CAS Google Scholar
  11. Swanson, E.A. et al. In vivo retinal imaging by optical coherence tomography. Opt. Lett. 18, 1864–1866 (1993).
    Article CAS Google Scholar
  12. Fujimoto, J.G. et al. Optical biopsy and imaging using optical coherence tomography. Nature Med. 1, 970–972 (1995).
    Article CAS Google Scholar
  13. Boppart, S.A. et al. In vivo cellular optical coherence tomography imaging. Nature Med. 4, 861–865 (1998).
    Article CAS Google Scholar
  14. Tearney, G.J. et al. In vivo endoscopic optical biopsy with optical coherence tomography. Science 276, 2037–2039 (1997).
    Article CAS Google Scholar
  15. Fujimoto, J.G., Pitris, C., Boppart, S. & Brezinski, M. Optical coherence tomography, an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2, 9–25 (2000).
    Article CAS Google Scholar
  16. Hee, M.R. et al. Optical coherence tomography of the human retina. Arch. Ophthalmol. 113, 325–332 (1995).
    Article CAS Google Scholar
  17. Hee, M.R. et al. Topography of diabetic macular edema with optical coherence tomography. Ophthalmology 105, 360–370 (1998).
    Article CAS Google Scholar
  18. Hee, M.R. et al. Optical coherence tomography of macular holes. Ophthalmology 102, 748–756 (1995).
    Article CAS Google Scholar
  19. Hee, M.R. et al. Optical coherence tomography of age-related macular degeneration and choroidal neovascularization. Ophthalmology 103, 1260–1270 (1996).
    Article CAS Google Scholar
  20. Schuman, J.S. et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch. Ophthalmol. 113, 586–596 (1995).
    Article CAS Google Scholar
  21. Schuman, J.S. et al. Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology 103, 1889–1898 (1996).
    Article CAS Google Scholar
  22. Bowd, C., Weinreb, R.N., Williams, J.M. & Zangwill, L.M. The retinal nerve fiber layer thickness in ocular hypertensive, normal and glaucomatous eyes with optical coherence tomography. Arch. Ophthalmol. 118, 22–26 (2000).
    Article CAS Google Scholar
  23. Drexler, W. et al. In vivo ultrahigh resolution optical coherence tomography. Opt. Lett. 24, 1221–1223 (1999).
    Article CAS Google Scholar
  24. Morgner, U. et al. Spectroscopic optical coherence tomography. Opt. Lett. 25, 111–113 (2000).
    Article CAS Google Scholar
  25. Morgner, U. et al. Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser. Opt. Lett. 24, 411–413 (1999).
    Article CAS Google Scholar
  26. Gass, J.D.M. Normal macula. in Stereoscopic Atlas of Macular Diseases: Diagnosis and Treatment. vol. 1, 1–49 (Mosby, St. Louis, Missouri, 1997).
    Google Scholar
  27. Hogan, H., Alvarado, J.A. & Wedell, J.E. Histology of the Human Eye: An Atlas and Textbook. 393–522 (W.B. Saunders, Philadelphia, 1971).
    Google Scholar
  28. Zeimer, R., Asrani. S., Zou. S., Quigley. H. & Jampel, H. Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. Ophthalmology 105, 224–231 (1998).
    Article CAS Google Scholar
  29. Krebs, W. & Krebs, I. in Primate Retina and Choroid—Atlas of Fine Structure in Man and Monkey. 4–8 (Springer, New York, 1991).
    Book Google Scholar
  30. Spalton, D.J., Hitchings, R.A. & Hunter, P.A. Anatomy of the retina. in Atlas of Clinical Ophthalmology 2nd edn., 13.3–13.9 (Mosby, St. Louis, Missouri, 1994).
    Google Scholar
  31. Oyster, C.W. in The Human Eye — Structure and Function. (ed. Oyster, C.W.) 660–661 (Sinauer Associates, Sunderland, Massachusetts, 1999).
    Google Scholar
  32. Ramrattan, R.S. et al. Morphometric analysis of Bruch's membrane, the choriocappillaris, and the choroid in aging. Invest. Ophthalmol. Vis. Sci. 35, 2857–2864 (1994).
    CAS Google Scholar
  33. Rohen, J.W. Morphologie und embryologie des sehorgans. in Augenheilkunde in Klinik und Praxis (ed. Francois, J. & Hollwich, F.) 1.17–1.19 (Georg Thieme, Stuttgart, 1977).
    Google Scholar
  34. Marshall, J. & Heckenlively, J.R. Pathologic findings and putative mechanisms in retinitis pigmentosa. in Retinitis Pigmentosa. (ed. Heckenlively, J.R.) 37–67 (J.B. Lippincott, Philadelphia, 1988).
    Google Scholar
  35. Toth, C.A. et al. A comparision of retinal morphology viewed by optical coherence tomography and light microscopy. Arch. Ophthalmol. 115, 1425–1428 (1997).
    Article CAS Google Scholar
  36. Huang, Y. et al. Relation of optical coherence tomography to microanatomy in normal and rd chickens. Invest. Ophthalmol. Vis. Sci. 39, 2405–2416 (1998).
    CAS Google Scholar
  37. Chauhan, D.S. & Marshall, J. The interpretation of optical coherence tomography images of the retina. Invest. Ophthalmol. Vis. Sci. 40, 2332–2341 (1999).
    CAS PubMed Google Scholar
  38. Knighton, R.W. & Huang, X.R. Optical coherence tomography of retinal nerve fiber layer (e-letter). Invest. Ophthalmol. Vis. Sci. 41 (2000).
  39. Howland, H.C. & Howland, B. A subjective method for the measurement of monochromatic aberrations of the eye. J. Opt. Soc. Am. 67, 1508–1518 (1977).
    Article CAS Google Scholar
  40. Thrane, L., Yura, H.T. & Andersen, P.E. Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle. J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 17, 484–490 (2000).
    Article CAS Google Scholar
  41. Safe Use of Lasers, ANSI Z 136.1. (American National Standards Institute, New York, 1993).

Download references