Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands (original) (raw)
Axelrad, A.M. et al. High-resolution chromoendoscopy for the diagnosis of diminutive colon polyps: implications for colon cancer screening. Gastroenterology110, 1253–1258 (1996). ArticleCAS Google Scholar
Acosta, M.M. & Boyce, H.W. Jr. Chromoendoscopy: where is it useful? J. Clin. Gastroenterol.27, 13–20 (1998). ArticleCAS Google Scholar
Fleischer, D.E. Chromoendoscopy and magnification endoscopy in the colon. Gastrointest. Endosc.49, S45–S49 (1999). ArticleCAS Google Scholar
Wang, T.D. et al. Fluorescence endoscopic imaging of human colonic adenomas. Gastroenterology111, 1182–1191 (1996). ArticleCAS Google Scholar
Stepp, H., Sroka, R. & Baumgartner, R. Fluorescence endoscopy of gastrointestinal diseases: basic principles, techniques and clinical experience. Endoscopy30, 379–386 (1998). ArticleCAS Google Scholar
Marcon, N.E. & Wilson, B.C. The value of fluorescence techniques in gastrointestinal endoscopy: better than the endoscopist's eye? I: The North American experience. Endoscopy30, 419–421 (1998). ArticleCAS Google Scholar
Haringsma, J. & Tytgat, G.N. The value of fluorescence techniques in gastrointestinal endoscopy: better than the endoscopist's eye? I: The European experience. Endoscopy30, 416–418 (1998). ArticleCAS Google Scholar
Brand, S. et al. Detection of colonic dysplasia by light-induced fluorescence endoscopy: a pilot study. Int. J. Colorectal Dis.14, 63–68 (1999). ArticleCAS Google Scholar
Folli et al. Antibody–indocyanin conjugates for immunophotodetection of human squamous cell carcinoma in nude mice. Cancer Res.54, 2643–2649 (1994). CASPubMed Google Scholar
Ballou, B. et al. Tumor labeling in vivo using cyanine-conjugated monoclonal antibodies. Cancer Immunol. Immunother.41, 257–263 (1995). ArticleCAS Google Scholar
Licha, K. et al. Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization. Photochem. Photobiol.72, 392–398 (2000). ArticleCAS Google Scholar
Becker, A. et al. Macromolecular contrast agents for optical imaging of tumors: comparison of indotricarbocyanine-labeled human serum albumin and transferrin. Photochem. Photobiol.72, 234–241 (2000). ArticleCAS Google Scholar
Neri, D. et al. Targeting by affinity-matured recombinant antibody fragments of an angiogenesis-associated fibronectin isoform. Nat. Biotechnol.15, 1271–1275 (1997). ArticleCAS Google Scholar
Weissleder, R., Tung, C.-H., Mahmood, U. & Bogdanov, A. Jr. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat. Biotechnol.17, 375–378 (1999). ArticleCAS Google Scholar
Goldsmith, S.J. Receptor imaging: competitive or complementary to antibody imaging? Semin. Nucl. Med.27, 85–93 (1997). ArticleCAS Google Scholar
Reubi, J.C. Relevance of somatostatin receptors and other peptide receptors in pathology. Endocr. Pathol.8, 11–20 (1997). ArticleCAS Google Scholar
Ehlers, R.A. et al. Gut peptide receptor expression in human pancreatic cancers. Ann. Surg.231, 838–848 (2000). ArticleCAS Google Scholar
Reubi, J.C., Lang, W., Maurer, R., Koper, J.W. & Lamberts, S.W.J. Distribution and biochemical characterization of somatostatin receptors in tumors of the human central nervous system. Cancer Res.47, 5758–5764 (1987). CASPubMed Google Scholar
John, M. et al. Positive somatostatin receptor scintigraphy correlates with the presence of somatostatin receptor subtype 2. Gut38, 33–39 (1996). ArticleCAS Google Scholar
Schaer, J.C., Waser, B., Mengod, G. & Reubi, J.C. Somatostatin receptor subtypes sst1, sst2, sst3 and sst5 expression in human pituitary, gastroentero-pancreatic and mammary tumors: comparison of mRNA analysis with receptor autoradiography. Int. J. Cancer70, 530–537 (1997). ArticleCAS Google Scholar
Lamberts, S.W.J., Bakker, W.H., Reubi, J.-C. & Krenning, E.P. Somatostatin receptor imaging. In vivo localization of tumors with a radiolabeled somatostatin analog. J. Steroid Biochem. Mol. Biol.37, 1079–1082 (1990). ArticleCAS Google Scholar
Wiedenmann, B. et al. Gastroenteropancreatic tumor imaging with somatostatin receptor scintigraphy. Semin. Oncol.21, 29–32 (1994). CASPubMed Google Scholar
Jensen, R.T., Gibril, F. & Termanini, B. Definition of the role of somatostatin receptor scintigraphy in gastrointestinal neuroendocrine tumor localization. Yale J. Biol. Med.70, 481–500 (1997). CASPubMedPubMed Central Google Scholar
Lewis, J.S. et al. Comparison of four 64Cu-labeled somatostatin analogues in vitro and in a tumor-bearing rat model: evaluation of new derivatives for positron emission tomography imaging and targeted radiotherapy J. Med. Chem.42, 1341–1347 (1999). ArticleCAS Google Scholar
Licha, K. et al. Synthesis, characterization and biological properties of cyanine-labeled somatostatin analogues as receptor-targeted fluorescent probes. Bioconjug. Chem.12, 44–50 (2001). ArticleCAS Google Scholar
Lamberts, S.W., Chayvialle, J.-A. & Krenning, E.P. The visualization of gastroenteropancreatic endocrine tumors. Metabolism41, Suppl. 2, 111–115 (1992). ArticleCAS Google Scholar
Wängberg, B. et al. Intraoperative detection of somatostatin-receptor-positive neuroendocrine tumors using indium-111-labelled DTPA-D-Phe1-octreotide. Br. J. Cancer73, 770–775 (1996). Article Google Scholar
Denzler, B. & Reubi, J.C. Expression of somatostatin receptors in peritumoral veins of human tumors. Cancer85, 188–198 (1999). ArticleCAS Google Scholar