DNA shuffling method for generating highly recombined genes and evolved enzymes (original) (raw)
References
Kikuchi, M., Ohnishi, K. & Harayama, S. An effective family shuffling method using single-stranded DNA. Gene243, 133–137 (2000). ArticleCAS Google Scholar
Lorimer, I.A. & Pastan, I. Random recombination of antibody single chain Fv sequences after fragmentation with DNaseI in the presence of Mn2+. Nucleic Acids Res.23, 3067–3068 (1995). ArticleCAS Google Scholar
Shao, Z., Zhao, H., Giver, L. & Arnold, F.H. Random-priming in vitro recombination: an effective tool for directed evolution. Nucleic Acids Res.26, 681–683 (1998). ArticleCAS Google Scholar
Stemmer, W.P. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA91, 10747–10751 (1994). ArticleCAS Google Scholar
Stemmer, W.P. Rapid evolution of a protein in vitro by DNA shuffling. Nature370, 389–391 (1994). ArticleCAS Google Scholar
Zhao, H. & Arnold, F.H. Optimization of DNA shuffling for high fidelity recombination. Nucleic Acids Res.25, 1307–1308 (1997). ArticleCAS Google Scholar
Levichkin, I.V., Shul'ga, A.A., Kurbanov, F.T. & Kirpichnikov, M.P. A new method of designing hybrid genes—the homolog recombination method. Mol. Biol. (Mosk).29, 983–991 (1995). CASPubMed Google Scholar
Zhao, H., Giver, L., Shao, Z., Affholter, J.A. & Arnold, F.H. Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat. Biotechnol.16, 258–261 (1998). ArticleCAS Google Scholar
Piddington, C.S., Kovacevich, B.R. & Rambosek, J. Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8. Appl. Environ. Microbiol.61, 468–475 (1995). CASPubMedPubMed Central Google Scholar
Fridrick, C. et al. Isolation and characterization of a biodesulfurizing Nocardia sp. In Abstracts of the 99th General Meeting of the American Society for Microbiology, Abstr. O–23 500. (American Society for Microbiology, Washington, DC; 1999). Google Scholar
Levinson, W., Coco, W., Crist, M., Fridrick, C. & Pienkos, P. Directed evolution of DBT monooxygenase using growth on biodesulfurized diesel oil as a selection and screening strategy. In Abstracts of the Annual Meeting of the Society for Industrial Microbiology, San Diego, Abstr. P31 128. (Society for Industrial Microbiology, Fairfax, VA; 2000). Google Scholar
Eckert, K.A. & Kunkel, T.A. The fidelity of DNA polymerase used in the polymerase chain reactions. In PCR. A practical approach. (eds McPherson, M.J., Quirke, P. & Taylor, G.R.) 225–244 (IRL Press, Washington, DC; 1991). Google Scholar
Arensdorf, J.J. & Pienkos, P. Biotransformations of model sulfur compounds by Rhodococcus. In Abstracts of the 100th General Meeting of the American Society for Microbiology, Los Angeles, Abstr. O–24 501. (American Society for Microbiology, Washington, DC; 2000). Google Scholar
Lei, B. & Tu, S.C. Gene overexpression, purification, and identification of a desulfurization enzyme from Rhodococcus sp. strain IGTS8 as a sulfide/sulfoxide monooxygenase. J. Bacteriol.178, 5699–5705 (1996). ArticleCAS Google Scholar
Denome, S.A., Oldfield, C., Nash, L.J. & Young, K.D. Characterization of the desulfurization genes from Rhodococcus sp. strain IGTS8. J. Bacteriol.176, 6707–6716 (1994). ArticleCAS Google Scholar
Oldfield, C., Pogrebinsky, O., Simmonds, J., Olson, E.S. & Kulpa, C.F. Elucidation of the metabolic pathway for dibenzothiophene desulphurization by Rhodococcus sp. strain IGTS8 (ATCC 53968). Microbiology143, 2961–2973 (1997). ArticleCAS Google Scholar
Charlesworth, B. Mutation-selection balance and the evolutionary advantage of sex and recombination. Genet. Res.55, 199–221 (1990). ArticleCAS Google Scholar
Felsenstein, J. & Yokoyama, S. The evolutionary advantage of recombination. II. Individual selection for recombination. Genetics83, 845–859 (1976). CASPubMedPubMed Central Google Scholar
Kondrashov, A.S. Deleterious mutations as an evolutionary factor. 1. The advantage of recombination. Genet. Res.44, 199–217 (1984). ArticleCAS Google Scholar
Minshull, J. & Stemmer, W.P. Protein evolution by molecular breeding. Curr. Opin. Chem. Biol.3, 284–290 (1999). ArticleCAS Google Scholar
Ostermeier, M., Nixon, A.E. & Benkovic, S.J. Incremental truncation as a strategy in the engineering of novel biocatalysts. Bioorg. Med. Chem.7, 2139–2144 (1999). ArticleCAS Google Scholar
Crameri, A., Raillard, S.A., Bermudez, E. & Stemmer, W.P. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature391, 288–291 (1998). ArticleCAS Google Scholar
Kumamaru, T., Suenaga, H., Mitsuoka, M., Watanabe, T. & Furukawa, K. Enhanced degradation of polychlorinated biphenyls by directed evolution of biphenyl dioxygenase. Nat. Biotechnol.16, 663–666 (1998). ArticleCAS Google Scholar
Christians, F.C., Scapozza, L., Crameri, A., Folkers, G. & Stemmer, W.P. Directed evolution of thymidine kinase for AZT phosphorylation using DNA family shuffling. Nat. Biotechnol.17, 259–264 (1999). ArticleCAS Google Scholar
Barany, F. The ligase chain reaction in a PCR world. PCR Methods Appl.1, 5–16 (1991). ArticleCAS Google Scholar
Luo, J., Bergstrom, D.E. & Barany, F. Improving the fidelity of Thermus thermophilus DNA ligase. Nucleic Acids Res.24, 3071–3078 (1996). ArticleCAS Google Scholar
Shuman, S. Vaccinia virus DNA ligase: specificity, fidelity, and inhibition. Biochemistry (Mosc).34, 16138–16147 (1995). ArticleCAS Google Scholar
Sriskanda, V. & Shuman, S. Specificity and fidelity of strand joining by Chlorella virus DNA ligase. Nucleic Acids Res.26, 3536–3541 (1998). ArticleCAS Google Scholar
Kwok, S. et al. Effects of primer–template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. Nucleic Acids Res.18, 999–1005. (1990). ArticleCAS Google Scholar
Coco, W.M., Crist, M., Levinson, W.E. & Darzins, A. A novel method of gene family shuffling relieves simultaneous bottlenecks in a highly engineered pathway. In Abstracts of the Society for Industrial Microbiology Annual Meeting, San Diego, Abstr. P30 97. (Society for Industrial Microbiology, Fairfax, VA; 2000). Google Scholar
Moore, J.C., Jin, H.M., Kuchner, O. & Arnold, F.H. Strategies for the in vitro evolution of protein function: enzyme evolution by random recombination of improved sequences. J. Mol. Biol.272, 336–347 (1997). ArticleCAS Google Scholar
Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning, Edn. 2. (Cold Spring Harbor Laboratory Press, Plainview, New York; 1989). Google Scholar
Liu, W.E., Tan, D. & Zhang, Z. Serum HBV DNA detected by polymerase chain reaction with dUTP/uracil– DNA glycosylase. Hunan I. Ko Ta Hsueh Hsueh Pao23, 278–280 (1998). CASPubMed Google Scholar
Lyamichev, V., Brow, M.A. & Dahlberg, J.E. Structure-specific endonucleolytic cleavage of nucleic acids by eubacterial DNA polymerases. Science260, 778–783 (1993). ArticleCAS Google Scholar
Bigey, F., Grossiord, B., Chan Kuo Chion, C.K., Arnaud, A. & Galzy, P. Brevibacterium linens pBL33 and Rhodococcus rhodochrous pRC1 cryptic plasmids replicate in Rhodococcus sp. R312 (formerly Brevibacterium sp. R312). Gene154, 77–79 (1995). ArticleCAS Google Scholar
O'Connor, K.E., Dobson, A.D. & Hartmans, S. Indigo formation by microorganisms expressing styrene monooxygenase activity. Appl. Environ. Microbiol.63, 4287–4291 (1997). CASPubMedPubMed Central Google Scholar