DNA shuffling method for generating highly recombined genes and evolved enzymes (original) (raw)

References

  1. Kikuchi, M., Ohnishi, K. & Harayama, S. An effective family shuffling method using single-stranded DNA. Gene 243, 133–137 (2000).
    Article CAS Google Scholar
  2. Lorimer, I.A. & Pastan, I. Random recombination of antibody single chain Fv sequences after fragmentation with DNaseI in the presence of Mn2+. Nucleic Acids Res. 23, 3067–3068 (1995).
    Article CAS Google Scholar
  3. Shao, Z., Zhao, H., Giver, L. & Arnold, F.H. Random-priming in vitro recombination: an effective tool for directed evolution. Nucleic Acids Res. 26, 681–683 (1998).
    Article CAS Google Scholar
  4. Stemmer, W.P. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA 91, 10747–10751 (1994).
    Article CAS Google Scholar
  5. Stemmer, W.P. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391 (1994).
    Article CAS Google Scholar
  6. Zhao, H. & Arnold, F.H. Optimization of DNA shuffling for high fidelity recombination. Nucleic Acids Res. 25, 1307–1308 (1997).
    Article CAS Google Scholar
  7. Levichkin, I.V., Shul'ga, A.A., Kurbanov, F.T. & Kirpichnikov, M.P. A new method of designing hybrid genes—the homolog recombination method. Mol. Biol. (Mosk). 29, 983–991 (1995).
    CAS PubMed Google Scholar
  8. Zhao, H., Giver, L., Shao, Z., Affholter, J.A. & Arnold, F.H. Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat. Biotechnol. 16, 258–261 (1998).
    Article CAS Google Scholar
  9. Piddington, C.S., Kovacevich, B.R. & Rambosek, J. Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8. Appl. Environ. Microbiol. 61, 468–475 (1995).
    CAS PubMed PubMed Central Google Scholar
  10. Fridrick, C. et al. Isolation and characterization of a biodesulfurizing Nocardia sp. In Abstracts of the 99th General Meeting of the American Society for Microbiology, Abstr. O–23 500. (American Society for Microbiology, Washington, DC; 1999).
    Google Scholar
  11. Levinson, W., Coco, W., Crist, M., Fridrick, C. & Pienkos, P. Directed evolution of DBT monooxygenase using growth on biodesulfurized diesel oil as a selection and screening strategy. In Abstracts of the Annual Meeting of the Society for Industrial Microbiology, San Diego, Abstr. P31 128. (Society for Industrial Microbiology, Fairfax, VA; 2000).
    Google Scholar
  12. Eckert, K.A. & Kunkel, T.A. The fidelity of DNA polymerase used in the polymerase chain reactions. In PCR. A practical approach. (eds McPherson, M.J., Quirke, P. & Taylor, G.R.) 225–244 (IRL Press, Washington, DC; 1991).
    Google Scholar
  13. Arensdorf, J.J. & Pienkos, P. Biotransformations of model sulfur compounds by Rhodococcus. In Abstracts of the 100th General Meeting of the American Society for Microbiology, Los Angeles, Abstr. O–24 501. (American Society for Microbiology, Washington, DC; 2000).
    Google Scholar
  14. Lei, B. & Tu, S.C. Gene overexpression, purification, and identification of a desulfurization enzyme from Rhodococcus sp. strain IGTS8 as a sulfide/sulfoxide monooxygenase. J. Bacteriol. 178, 5699–5705 (1996).
    Article CAS Google Scholar
  15. Denome, S.A., Oldfield, C., Nash, L.J. & Young, K.D. Characterization of the desulfurization genes from Rhodococcus sp. strain IGTS8. J. Bacteriol. 176, 6707–6716 (1994).
    Article CAS Google Scholar
  16. Oldfield, C., Pogrebinsky, O., Simmonds, J., Olson, E.S. & Kulpa, C.F. Elucidation of the metabolic pathway for dibenzothiophene desulphurization by Rhodococcus sp. strain IGTS8 (ATCC 53968). Microbiology 143, 2961–2973 (1997).
    Article CAS Google Scholar
  17. Charlesworth, B. Mutation-selection balance and the evolutionary advantage of sex and recombination. Genet. Res. 55, 199–221 (1990).
    Article CAS Google Scholar
  18. Felsenstein, J. The evolutionary advantage of recombination. Genetics 78, 737–756 (1974).
    CAS PubMed PubMed Central Google Scholar
  19. Felsenstein, J. & Yokoyama, S. The evolutionary advantage of recombination. II. Individual selection for recombination. Genetics 83, 845–859 (1976).
    CAS PubMed PubMed Central Google Scholar
  20. Kondrashov, A.S. Deleterious mutations as an evolutionary factor. 1. The advantage of recombination. Genet. Res. 44, 199–217 (1984).
    Article CAS Google Scholar
  21. Minshull, J. & Stemmer, W.P. Protein evolution by molecular breeding. Curr. Opin. Chem. Biol. 3, 284–290 (1999).
    Article CAS Google Scholar
  22. Ostermeier, M., Nixon, A.E. & Benkovic, S.J. Incremental truncation as a strategy in the engineering of novel biocatalysts. Bioorg. Med. Chem. 7, 2139–2144 (1999).
    Article CAS Google Scholar
  23. Crameri, A., Raillard, S.A., Bermudez, E. & Stemmer, W.P. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391, 288–291 (1998).
    Article CAS Google Scholar
  24. Kumamaru, T., Suenaga, H., Mitsuoka, M., Watanabe, T. & Furukawa, K. Enhanced degradation of polychlorinated biphenyls by directed evolution of biphenyl dioxygenase. Nat. Biotechnol. 16, 663–666 (1998).
    Article CAS Google Scholar
  25. Christians, F.C., Scapozza, L., Crameri, A., Folkers, G. & Stemmer, W.P. Directed evolution of thymidine kinase for AZT phosphorylation using DNA family shuffling. Nat. Biotechnol. 17, 259–264 (1999).
    Article CAS Google Scholar
  26. Barany, F. The ligase chain reaction in a PCR world. PCR Methods Appl. 1, 5–16 (1991).
    Article CAS Google Scholar
  27. Luo, J., Bergstrom, D.E. & Barany, F. Improving the fidelity of Thermus thermophilus DNA ligase. Nucleic Acids Res. 24, 3071–3078 (1996).
    Article CAS Google Scholar
  28. Shuman, S. Vaccinia virus DNA ligase: specificity, fidelity, and inhibition. Biochemistry (Mosc). 34, 16138–16147 (1995).
    Article CAS Google Scholar
  29. Sriskanda, V. & Shuman, S. Specificity and fidelity of strand joining by Chlorella virus DNA ligase. Nucleic Acids Res. 26, 3536–3541 (1998).
    Article CAS Google Scholar
  30. Kwok, S. et al. Effects of primer–template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. Nucleic Acids Res. 18, 999–1005. (1990).
    Article CAS Google Scholar
  31. Coco, W.M., Crist, M., Levinson, W.E. & Darzins, A. A novel method of gene family shuffling relieves simultaneous bottlenecks in a highly engineered pathway. In Abstracts of the Society for Industrial Microbiology Annual Meeting, San Diego, Abstr. P30 97. (Society for Industrial Microbiology, Fairfax, VA; 2000).
    Google Scholar
  32. Moore, J.C., Jin, H.M., Kuchner, O. & Arnold, F.H. Strategies for the in vitro evolution of protein function: enzyme evolution by random recombination of improved sequences. J. Mol. Biol. 272, 336–347 (1997).
    Article CAS Google Scholar
  33. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning, Edn. 2. (Cold Spring Harbor Laboratory Press, Plainview, New York; 1989).
    Google Scholar
  34. Liu, W.E., Tan, D. & Zhang, Z. Serum HBV DNA detected by polymerase chain reaction with dUTP/uracil– DNA glycosylase. Hunan I. Ko Ta Hsueh Hsueh Pao 23, 278–280 (1998).
    CAS PubMed Google Scholar
  35. Lyamichev, V., Brow, M.A. & Dahlberg, J.E. Structure-specific endonucleolytic cleavage of nucleic acids by eubacterial DNA polymerases. Science 260, 778–783 (1993).
    Article CAS Google Scholar
  36. Bigey, F., Grossiord, B., Chan Kuo Chion, C.K., Arnaud, A. & Galzy, P. Brevibacterium linens pBL33 and Rhodococcus rhodochrous pRC1 cryptic plasmids replicate in Rhodococcus sp. R312 (formerly Brevibacterium sp. R312). Gene 154, 77–79 (1995).
    Article CAS Google Scholar
  37. O'Connor, K.E., Dobson, A.D. & Hartmans, S. Indigo formation by microorganisms expressing styrene monooxygenase activity. Appl. Environ. Microbiol. 63, 4287–4291 (1997).
    CAS PubMed PubMed Central Google Scholar

Download references