Trinucleotide expansion in haploid germ cells by gap repair (original) (raw)

References

  1. Petersen, A., Mani, K. & Brundin, P. Recent advances on the pathogenesis of Huntington's disease. Exp. Neurology 157, 1–18 (1999).
    Article CAS Google Scholar
  2. Gacy, A.M., Goellner, G., Juranic, N., Macura, S. & McMurray, C.T. Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell 81, 533–540 (1995).
    Article CAS Google Scholar
  3. Gacy, A.M. et al. GAA instability in Friedriech's ataxia shares a common, DNA-directed and intraallelic mechanism with other trinucleotide diseases. Mol. Cell 1, 583–593 (1998).
    Article CAS Google Scholar
  4. McMurray, C.T. DNA secondary structure: a common and causative factor for expansion in human disease. Proc. Natl. Acad. Sci. USA 96, 1823–1825 (1999).
    Article CAS Google Scholar
  5. Goellner, G. et al. Different mechanisms underlie DNA instability in Huntington disease and colorectal cancer. Am. J. Hum. Genet. 60, 879–890 (1997).
    CAS PubMed PubMed Central Google Scholar
  6. Moore, H., Greewell, P.W., Liu, C.-P., Arnheim, N. & Petes, T.D. Triplet repeats form secondary structures that escape DNA repair in yeast. Proc. Natl. Acad. Sci. USA 96, 1504–1509 (1999).
    Article CAS Google Scholar
  7. Spiro, C. et al. Inhibition of FEN-1 processing by DNA secondary structure at trinucleotide repeats. Mol. Cell 4, 1079–1085 (1999).
    Article CAS Google Scholar
  8. Iyer, R.R. & Wells, R.D. Expansion and deletion of triplet repeat sequences in Escherichia coli occur on the leading strand of DNA replication. J. Biol. Chem. 274, 3865–3877 (1999).
    Article CAS Google Scholar
  9. Kang, S., Jaworski, A., Ohshima, K. & Wells, R.D. Expansion and deletion of CTG repeats from human disease genes are determined by the direction of replication in E. coli. Nature Genet. 10, 213–218 (1995).
    Article CAS Google Scholar
  10. Freudenreich, C.H., Stavenhagen, J.B. & Zakian, V.A. Stability of a CTG/CAG trinucleotide repeat in yeast is dependent on its orientation in the genome. Mol. Cell. Biol. 17, 2090–2097 (1997).
    Article CAS Google Scholar
  11. Miret, J.J., Pessoa-Brandao, L. & Lahue, R.S. Orientation-dependent and sequence-specific expansion of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 95, 12438–12443 (1998).
    Article CAS Google Scholar
  12. Schweitzer, J.K. & Livingston, D.M. Expansions of CAG repeat tracts are frequent in a yeast mutant defective in Okazaki fragment maturation. Hum. Mol. Genet. 7, 69–74 (1998).
    Article CAS Google Scholar
  13. Cemal, C.K., Huxley, C. & Chamberlain, S. Insertion of expanded CAG trinucleotide repeat motifs into a yeast artificial chromosome containing the human Machado-Joseph disease gene. Gene 236, 53–61 (1999).
    Article CAS Google Scholar
  14. Jakupciak, J.P. & Wells, R.D. Genetic instabilities in (CTG. CAG) repeats occur by recombination. J. Biol. Chem. 274, 23468–23479 (1999).
    Article CAS Google Scholar
  15. Freudenreich, C.H., Kantrow, S.M. & Zakian, V.A. Expansion and length-dependent fragility of CTG repeats in yeast. Science 279, 853–856 (1998).
    Article CAS Google Scholar
  16. Richard, G.-F., Goellner, G.M., McMurray, C.T. & Haber, J.E. Recombination-induced CAG trinucleotide repeat expansions in yeast involve the MRE11/RAD50/XRS2 complex. EMBO J. 19, 2381–2390 (2000).
    Article CAS Google Scholar
  17. Sarkar, P.S., Chang, H.C., Boudi, F.B. & Reddy, S. CTG repeats show bimodal amplication in E. coli. Cell 95, 531–540 (1998).
    Article CAS Google Scholar
  18. Lyons-Darden, T. & Topal, M.D. Abasic sites induce triplet-repeat expansion during DNA replication in vitro. J. Biol. Chem. 274, 25975–25978 (1999).
    Article CAS Google Scholar
  19. Mangiarini, L. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506 (1996).
    Article CAS Google Scholar
  20. Norremolle, A. et al. Correlation between magnitude of CAG repeat length alterations and length of the paternal repeat in paternally inherited Huntington's disease. Clin. Genet. 47, 113–117 (1995).
    Article CAS Google Scholar
  21. Ranen, N.G. et al. Anticipation and instability of IT-15 (CAG)n repeats in parent-offspring pairs with Huntington disease. Am. J. Hum. Genet. 57, 593–602 (1995).
    CAS PubMed PubMed Central Google Scholar
  22. Duyao, M. et al. Trinucleotide repeat length instability and age of onset in Huntington's disease. Nature Genet. 4, 387–392 (1993).
    Article CAS Google Scholar
  23. Leeflang, E.P. et al. Analysis of germline mutation spectra at the Huntington's disease locus supports a mitotic mutation mechanism. Hum. Mol. Genet. 8, 173–183 (1999).
    Article CAS Google Scholar
  24. McDonald, M.E. et al. Gametic but not somatic instability of CAG repeat length in Huntington's disease. J. Med. Genet. 30, 982–986 (1993).
    Article Google Scholar
  25. Mangiarini, L. et al. Instability of highly expanded CAG in mice transgenic for the Huntington's disease mutation. Nature Genet. 5, 197–200 (1997).
    Article Google Scholar
  26. Kovtun, I.V., Therneau, T.M. & McMurray, C.T. Gender of the embryo contributes to CAG instability in transgenic mice containing a Huntington's disease gene. Hum. Mol. Genet. 9, 2667–2775 (2000).
    Article Google Scholar
  27. Manley, K., Shirley, T.L., Flaherty, L. & Messer, A. MSH2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice. Nature Genet. 23, 471–473 (1999).
    Article CAS Google Scholar
  28. McPherson, S.M. & Longo, F.J. Nicking of rat spermatid and spermatozoa DNA: possible involvement of DNA topoisomerase II. Dev. Biol. 158, 122–130 (1993).
    Article CAS Google Scholar
  29. Smith, A. & Haaf, T. DNA nicks and increased sensitivity of DNA to fluorescence in situ end labeling during functional spermiogenesis. Biotechniques 25, 496–502 (1998).
    Article CAS Google Scholar
  30. Mays-Hoopes, L.L., Bolen, J., Riggs, A.D. & Singer-Sam, J. Preparation of spermatogonia, spermatocytes, and round spermatids for analysis of gene expression using fluorescence-activated cell sorting. Biol. Reprod. 53, 1003–1011 (1995).
    Article CAS Google Scholar

Download references