- von Boehmer, H. & Fehling, H. J. Structure and function of the pre-T cell receptor. Annu. Rev. Immunol. 15, 433–452 (1997).
Article CAS Google Scholar
- Aifantis, I., Buer, J., von Boehmer, H. & Azogui, O. Essential role of the pre-T cell receptor in allelic exclusion of the T cell receptor β locus. Immunity 7, 601–607 (1997).
Article CAS Google Scholar
- Hoffman, E. S. et al. Productive T-cell receptor β-chain gene rearrangement: coincident regulation of cell cycle and clonality during development in vivo. Genes Dev. 10, 948–962 (1996).
Article CAS Google Scholar
- Aifantis, I. et al. Allelic exclusion of the T cell receptor β locus requires the SH2 domain-containing leukocyte protein (SLP)-76 adaptor protein. J. Exp. Med. 190, 1093–1102 (1999).
Article CAS Google Scholar
- Irving, B. A., Alt, F. W. & Killeen, N. Thymocyte development in the absence of pre-T cell receptor extracellular immunoglobulin domains. Science 280, 905–908 (1998).
Article CAS Google Scholar
- Saint-Ruf, C. et al. Different initiation of pre-TCR and γδTCR signalling. Nature 406, 524–527 (2000).
Article CAS Google Scholar
- von Boehmer, H. et al. Pleiotropic changes controlled by the pre-T cell receptor. Curr. Opin. Immunol. 11, 135–142 (1999).
Article CAS Google Scholar
- Fischer, A. & Malissen, B. Natural and engineered disorders of lymphocyte development. Science 280, 237–243 (1998).
Article CAS Google Scholar
- Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18, 621–663 (2000).
Article CAS Google Scholar
- Attar, R. M. et al. Genetic approaches to study Rel/NF-κB/IκB function in mice. Semin. Cancer Biol. 8, 93–101 (1997).
Article CAS Google Scholar
- Horwitz, B. H., Scott, M. L., Cherry, S. R., Bronson, R. T. & Baltimore, D. Failure of lymphopoiesis after adoptive transfer of NF-κB–deficient fetal liver cells. Immunity 6, 765–772 (1997).
Article CAS Google Scholar
- Bakker, T. R., Renno, T. & Jongeneel, C. V. Impaired fetal thymocyte development after efficient adenovirus-mediated inhibition of NF-κB activation. J. Immunol. 162, 3456–3462 (1999).
CAS PubMed Google Scholar
- Voll, R. E. et al. NF-κB activation by the pre-T cell receptor serves as a selective survival signal in T lymphocyte development. Immunity 13, 677–689 (2000).
Article CAS Google Scholar
- Crabtree, G. R. & Clipstone, N. A. Signal transmission between the plasma membrane and nucleus of T lymphocytes. Annu. Rev. Biochem. 63, 1045–1083 (1994).
Article CAS Google Scholar
- Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–217 (1999).
Article CAS Google Scholar
- Valge, V. E., Wong, J. G., Datlof, B. M., Sinskey, A. J. & Rao, A. Protein kinase C is required for responses to T cell receptor ligands but not to interleukin-2 in T cells. Cell 55, 101–112 (1988).
Article CAS Google Scholar
- Schaeffer, E. M. & Schwartzberg, P. L. Tec family kinases in lymphocyte signaling and function. Curr. Opin. Immunol. 12, 282–288 (2000).
Article CAS Google Scholar
- Putney, J. W. Jr Capacitative calcium entry revisited. Cell Calcium 11, 611–624 (1990).
Article CAS Google Scholar
- Putney, J. W. Jr & McKay, R. R. Capacitative calcium entry channels. Bioessays 21, 38–46 (1999).
Article Google Scholar
- Hoth, M. & Penner, R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355, 353–356 (1992).
Article CAS Google Scholar
- Partiseti, M. et al. The calcium current activated by T cell receptor and store depletion in human lymphocytes is absent in a primary immunodeficiency. J. Biol. Chem. 269, 32327–32335 (1994).
CAS PubMed Google Scholar
- Rao, A., Luo, C. & Hogan, P. G. Transcription factors of the NFAT family: regulation and function. Annu. Rev. Immunol. 15, 707–747 (1997).
Article CAS Google Scholar
- Dolmetsch, R. E., Lewis, R. S., Goodnow, C. C. & Healy, J. I. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386, 855–858 (1997).
Article CAS Google Scholar
- Levelt, C. N., Ehrfeld, A. & Eichmann, K. Regulation of thymocyte development through CD3. I. Timepoint of ligation of CD3ɛ determines clonal deletion or induction of developmental program. J. Exp. Med. 177, 707–716 (1993).
Article CAS Google Scholar
- Shinkai, Y. & Alt, F. W. CD3 epsilon-mediated signals rescue the development of CD4+CD8+ thymocytes in RAG-2−/− mice in the absence of TCRβ chain expression. Int. Immunol. 6, 995–1001 (1994).
Article CAS Google Scholar
- Groettrup, M. et al. A novel disulfide-linked heterodimer on pre-T cells consists of the T cell receptor β chain and a 33 kd glycoprotein. Cell 75, 283–294 (1993).
Article CAS Google Scholar
- Henkel, T. et al. Rapid proteolysis of IκB-α is necessary for activation of transcription factor NF-κB. Nature 365, 182–185 (1993).
Article CAS Google Scholar
- Kiani, A., Rao, A. & Aramburu, J. Manipulating immune responses with immunosuppressive agents that target NFAT. Immunity 12, 359–372 (2000).
Article CAS Google Scholar
- Baeuerle, P. A. & Henkel, T. Function and activation of NF-κB in the immune system. Annu. Rev. Immunol. 12, 141–179 (1994).
Article CAS Google Scholar
- Vassilopoulos, D., Smallridge, R. C. & Tsokos, G. C. Effects of an aminosteroid inhibitor of phospholipase C-dependent processes on the TCR-mediated signal transduction pathway in human T cells. Clin. Immunol. Immunopathol. 77, 59–68 (1995).
Article CAS Google Scholar
- Hoth, M., Button, D. C. & Lewis, R. S. Mitochondrial control of calcium-channel gating: a mechanism for sustained signaling and transcriptional activation in T lymphocytes. Proc. Natl Acad. Sci. USA 97, 10607–10612 (2000).
Article CAS Google Scholar
- Fomina, A. F., Fanger, C. M., Kozak, J. A. & Cahalan, M. D. Single channel properties and regulated expression of Ca2+ release-activated Ca2+ (CRAC) channels in human T cells. J. Cell Biol. 150, 1435–1444 (2000).
Article CAS Google Scholar
- Tando, Y. et al. Caerulein-induced NF-κB/Rel activation requires both Ca2+ and protein kinase C as messengers. Am. J. Physiol. 277, 678–686 (1999).
Google Scholar
- von Boehmer, H., Aifantis, I., Azogui, O., SaintRuf, C., Grassi, F. The Impact of Pre-T Cell Receptor Signals on Gene Expression in Developing T Cells. Cold Spring Harb. Symp. Quant. Biol.. 64, 283–289 (1999).
Article CAS Google Scholar
- Feuillard, J. et al. In vivo identification of lymphocyte subsets exhibiting transcriptionally active NF-κB/Rel complexes. Int. Immunol 12, 613–621 (2000).
Article CAS Google Scholar
- Voll, R. E. & Ghosh, S. Role of NF-κB in T-lympocyte development. Cold Spring Harb. Symp. Quant. Biol. 64, 485–490 (1999).
Article CAS Google Scholar
- McCaffrey, P. G. et al. Isolation of the cyclosporin-sensitive T cell transcription factor NFATp. Science 262, 750–754 (1993).
Article CAS Google Scholar
- Amasaki, Y., Masuda, E. S., Imamura, R., Arai, K. & Arai, N. Distinct NFAT family proteins are involved in the nuclear NFAT-DNA binding complexes from human thymocyte subsets. J. Immunol. 160, 2324–2333 (1998).
CAS PubMed Google Scholar
- Yoshida, H. et al. The transcription factor NFATc1 regulates lymphocyte proliferation and Th2 cytokine production. Immunity 8, 115–124 (1998).
Article CAS Google Scholar
- Grumont, R. J., Rourke, I. J. & Gerondakis, S. Rel-dependent induction of A1 transcription is required to protect B cells from antigen receptor ligation-induced apoptosis. Genes Dev. 13, 400–411 (1999).
Article CAS Google Scholar
- Tamatani, M. et al. Tumor necrosis factor induces Bcl-2 and Bcl-x expression through NFκB activation in primary hippocampal neurons. J. Biol. Chem. 274, 8531–8538 (1999).
Article CAS Google Scholar
- Zong, W. X., Edelstein, L. C., Chen, C., Bash, J. & Gelinas, C. The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-κB that blocks TNFα-induced apoptosis. Genes Dev. 13, 382–387 (1999).
Article CAS Google Scholar
- Van Antwerp, D. J., Martin, S. J., Verma, I. M. & Green, D. R. Inhibition of TNF-induced apoptosis by NF-κB. Trends Cell Biol. 8, 107–111 (1998).
Article CAS Google Scholar
- Wang, C. Y., Mayo, M. W., Korneluk, R. G., Goeddel, D. V. & Baldwin, A. S. Jr NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281, 1680–1683 (1998).
Article CAS Google Scholar
- Linette, G. P., Li, Y., Roth, K. & Korsmeyer, S. J. Cross talk between cell death and cell cycle progression: BCL-2 regulates NFAT-mediated activation. Proc. Natl Acad. Sci. USA 93, 9545–9552 (1996).
Article CAS Google Scholar
- Shibasaki, F., Kondo, E., Akagi, T. & McKeon, F. Suppression of signalling through transcription factor NFAT by interactions between calcineurin and Bcl-2. Nature 386, 728–731 (1997).
Article CAS Google Scholar
- Guttridge, D. C., Albanese, C., Reuther, J. Y., Pestell, R. G. & Baldwin, A. S. Jr NF-κB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol. Cell Biol. 19, 5785–5799 (1999).
Article CAS Google Scholar
- Hinz, M. et al. NF-κB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol. Cell Biol. 19, 2690–2698 (1999).
Article CAS Google Scholar
- Okamura, R. M. et al. Redundant regulation of T cell differentiation and TCRα gene expression by the transcription factors LEF-1 and TCF-1. Immunity 8, 11–20 (1998).
Article CAS Google Scholar
- Zitt, C. et al. Cloning and functional expression of a human Ca2+-permeable cation channel activated by calcium store depletion. Neuron 16, 1189–1196 (1996).
Article CAS Google Scholar
- Acuto, O. & Cantrell, D. T cell activation and the cytoskeleton. Annu. Rev. Immunol. 18, 165–184 (2000).
Article CAS Google Scholar
- Alkon, D. L. & Rasmussen, H. A spatial-temporal model of cell activation. Science 239, 998–1005 (1988).
Article CAS Google Scholar
- Tuosto, L. et al. Mitogen-activated kinase kinase kinase 1 regulates T cell receptor- and CD28-mediated signaling events which lead to NF-κB activation. Eur. J. Immunol. 30, 2445–2454 (2000).
Article CAS Google Scholar
- Woodrow, M., Clipstone, N. A. & Cantrell, D. p21ras and calcineurin synergize to regulate the nuclear factor of activated T cells. J. Exp. Med. 178, 1517–1522 (1993).
Article CAS Google Scholar
- Gartner, F. et al. Immature thymocytes employ distinct signaling pathways for allelic exclusion versus differentiation and expansion. Immunity 10, 537–546 (1999).
Article CAS Google Scholar
- Iritani, B. M., Alberola-Ila, J., Forbush, K. A. & Perimutter, R. M. Distinct signals mediate maturation and allelic exclusion in lymphocyte progenitors. Immunity 10, 713–722 (1999).
Article CAS Google Scholar
- Shinkai, Y. et al. RAG-2–deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867 (1992).
Article CAS Google Scholar
- Porcellini, S., Panigada, M. & Grassi, F. Molecular and cellular aspects of induced thymus development in recombinase-deficient mice. Eur. J. Immunol. 29, 2476–2483 (1999).
Article CAS Google Scholar
- Schreiber, E., Matthias, P., Muller, M. M. & Schaffner, W. Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. Nucleic Acids Res. 17, 6419 (1989).
Article CAS Google Scholar