Heme oxygenase-1 protects against vascular constriction and proliferation (original) (raw)

References

  1. Maines, M.D. The heme oxygenase system: a regulator of second messenger gases. Annu. Rev. Pharmacol. Toxicol. 37, 517–554 (1997).
    Article CAS Google Scholar
  2. Soares, M.P. et al. Expression of heme oxygenase-1 can determine cardiac xenografts survival. Nature Med. 4, 1073–1077 (1998).
    Article CAS Google Scholar
  3. Hancock, W.W., Buelow, R., Sayegh, M.H. & Turka, L.A. Antibody-induced transplant arteriosclerosis is prevented by graft expression of anti-oxidant and anti-apoptotic genes. Nature Med. 4, 1392–1396 (1998).
    Article CAS Google Scholar
  4. Verma, A., Hirsch, D.J., Glatt, C.E., Ronnet, G.V. & Snyder, S.H. Carbon monoxide: putative neural messenger. Science 259, 381–384 (1993).
    Article CAS Google Scholar
  5. McCoubrey, W.K., Jr ., Huang, T.J. & Maines, M.D. Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur. J. Biochem. 247, 725–732 (1997).
    Article CAS Google Scholar
  6. Brouard, S. et al. Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis. J. Exp. Med. 192, 1015–1026 (2000).
    Article CAS Google Scholar
  7. Otterbein, L.E. et al. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nature Med. 6, 422–428 (2000).
    Article CAS Google Scholar
  8. Otterbein, L.E., Mantell, L.L. & Choi, A.M. Carbon monoxide provides protection against hyperoxic lung injury. Am. J. Physiol. 276, 688–694 (1999).
    Google Scholar
  9. Dore, S. et al. Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury. Proc. Natl. Acad. Sci. USA 96, 2445–2450 (1999).
    Article CAS Google Scholar
  10. Morita, T. et al. Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP. Proc. Natl. Acad. Sci. USA 92, 1479 (1995).
    Article Google Scholar
  11. Ohno, T. et al. Gene therapy for vascular smooth muscle cell proliferation after arterial injury. Science 265, 781–784 (1994).
    Article CAS Google Scholar
  12. Tanner, F.C. et al. Expression of cyclin-dependent kinase inhibitors in vascular disease. Circ. Res. 82, 396–403 (1998).
    Article CAS Google Scholar
  13. Yang, Z,-Y. et al. Role of the p21 cyclin-dependent kinase inhibitor in limiting intimal cell proliferation in response to arterial injury. Proc. Natl. Acad. Sci. USA 93, 7905–7910 (1996).
    Article CAS Google Scholar
  14. Morita, T. & Kourembanas, S. Endothelial cell expression of vasoconstrictors and growth factors is regulated by smooth muscle cell-derived carbon monoxide. J. Clin. Invest. 96, 2676–2682 (1995).
    Article CAS Google Scholar
  15. Marks, G., Brian, J., Nakatsu, K. & McLaughlin, B. Does carbon monoxide have a physiological function? Trend Pharmacol. Sci. 12, 185–188 (1991).
    Article CAS Google Scholar
  16. Sammut, I.A. et al. Carbon monoxide is a major contributor to the regulation of vascular tone in aortas expressing high levels of haeme oxygenase-1. Br. J. Pharmacol. 125, 1437–1444 (1998).
    Article CAS Google Scholar
  17. Suematsu, M. et al. Carbon monoxide: an endogenous modulator of sinusoidal tone in the perfused rat liver. J. Clin. Invest. 96, 2431–2437 (1995).
    Article CAS Google Scholar
  18. Foresti, R., Clark, J.E., Green, C.J. & Motterlini, R. Thiol compounds interact with nitric oxide in regulating heme oxygenase-1 induction in endothelial cells. Involvement of superoxide and peroxynitrite anions. J. Biol. Chem. 272, 18411–18417 (1997).
    Article CAS Google Scholar
  19. Durante, W., Kroll, M.H., Christodoulides, N., Peyton, K.J. & Schafer, A. Nitric oxide induces heme oxygenase-1 gene expression and carbon monoxide in production in vascular smooth muscle cells. Circ. Res. 80, 557–564 (1997).
    Article CAS Google Scholar
  20. Hartsfield, C.L., Alam, J., Cook, J.L. & Choi, A.M. Regulation of heme oxygenase-1 gene expression in vascular smooth muscle cells by nitric oxide. Am. J. Physiol. 273, L980–L988 (1997).
    CAS PubMed Google Scholar
  21. Yet, S.F. et al. Induction of heme oxygenase-1 expression in vascular smooth muscle cells. A link to endotoxic shock. J. Biol. Chem. 272, 4295–4301 (1997).
    Article CAS Google Scholar
  22. Motterlini, R., Foresti, R., Intaglietta, M. & Winslow, R.M. NO-mediated activation of heme oxygenase: endogenous cytoprotection against oxidative stress to endothelium. Am. J. Physiol. 270, H107–114 (1996).
    Article CAS Google Scholar
  23. Abraham, N.G. et al. Transfection of the human heme oxygenase gene into rabbit coronary microvessel endothelial cells: protective effect against heme and hemoglobin toxicity. Proc. Natl. Acad. Sci USA 92, 6798–6802 (1995).
    Article CAS Google Scholar
  24. Morita, T., Mitsialis, S.A., Koike, H., Liu, Y.X. & Kourembanas, S. Carbon monoxide controls the proliferation of hypoxic vascular smooth muscle cells. J. Biol. Chem. 272, 32804–32809 (1997).
    Article CAS Google Scholar
  25. Tanner, F.C. et al. Nitric oxide modulates expression of cell cycle regulatory proteins. A cytostatic strategy for inhibition of human vascular smooth muscle cell proliferation. Circulation 101, 1982–1989 (2000).
    Article CAS Google Scholar
  26. Lee, P.J., Alam, J., Wiegan, G.W. & Choi, A.M. Overexpression of heme oxygenase-1 in human pulmonary epithelial cells results in cell growth arrest and increased resistance to hyperoxia. Proc. Natl. Acad. Sci. USA 93, 10393–10398 (1996).
    Article CAS Google Scholar
  27. Wagner, C., Durante, W., Christodoulides, N., Hellums, J. & Schafer, A. Hemodynamic forces induce the expression of heme oxygenase in cultured vascular smooth muscle cells. J. Clin. Invest. 100, 589–596 (1997).
    Article CAS Google Scholar
  28. Wang, L.-J., Lee, T.-S., Lee, F.-Y., Pai, R.-C. & Chau, L.-Y. Expression of heme oxygenase-1 in atherosclerotic lesions. Am. J. Pathol. 152, 711–720 (1998).
    CAS PubMed PubMed Central Google Scholar
  29. Yet, S.F. et al. Hypoxia induces severe right ventricular dilatation and infarction in heme oxygenase-1 null mice. J. Clin. Invest. 103, 23–29 (1999).
    Article Google Scholar
  30. Brugarolas, J., Bronson, R.T. & Jacks, T. p21 is a critical CDK2 regulator essential for proliferation control in Rb-deficient cells. J. Cell Biol. 141, 503–514 (1998).
    Article CAS Google Scholar
  31. Brugarolas, J. et al. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377, 552–557 (1995).
    Article CAS Google Scholar
  32. Gunther, S., Alexander R.W., Atkinson W.J. & Gimbrone M.A. Functional angiotensin II receptors in cultured vascular smooth muscle cells. J. Cell Biol. 192, 289–298 (1982).
    Article Google Scholar
  33. Layne, M.D. et al. Aortic carboxypeptidase-like protein, a novel protein with discoidin and carboxypeptidase-like domains, is up-regulated during vascular smooth muscle cell differentiation. J. Biol. Chem. 273, 15654–15660 (1998).
    Article CAS Google Scholar
  34. Yoshinaga, T., Sassa, S. & Kappas, A. Purification and properties of bovine spleen heme oxygenase. Amino acid composition and sites of action of inhibitors of heme oxidation. J. Biol. Chem. 257, 7778–7785 (1982).
    CAS PubMed Google Scholar
  35. Wolin, M.S. et al. Guanylate cyclase from bovine lung. A kinetic analysis of the purified soluble enzyme by protoporphyrin IX, heme, and nitrosyl-heme. J. Biol. Chem. 257, 13312–13318 (1982).
    CAS PubMed Google Scholar
  36. Zakhary, R. et al. Heme oxygenase 2: Endothelial and neuronal localization and role in endothelium-dependent relaxation. Proc. Natl. Acad. Sci. USA 93, 795–798 (1996).
    Article CAS Google Scholar

Download references