The essential role of MEKK3 in TNF-induced NF-κB activation (original) (raw)

References

  1. Baeuerle, P. A. & Baltimore, D. NF-κB: ten years after. Cell 87, 13–20 (1996).
    Article CAS Google Scholar
  2. Baldwin, A. S. Jr The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol. 14, 649–683 (1996).
    Article CAS Google Scholar
  3. Siebenlist, U., Franzoso, G. & Brown, K. Structure, regulation and function of NF-κB. Annu. Rev. Cell Biol. 10, 405–455 (1994).
    Article CAS Google Scholar
  4. Ghosh, S., May, M. J. & Kopp, E. B. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225–260 (1998).
    Article CAS Google Scholar
  5. Israel, A. The IKK complex: an integrator of all signals that activate NF-κB? Trends Cell Biol. 10, 129–133 (2000).
    Article CAS Google Scholar
  6. Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18, 621–663 (2000).
    Article CAS Google Scholar
  7. Devin, A. et al. The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity 12, 419–429 (2000).
    Article CAS Google Scholar
  8. Zhang, S. Q., Kovalenko, A., Cantarella, G. & Wallach, D. Recruitment of the IKK signalosome to the p55 TNF receptor: RIP and A20 bind to NEMO (IKKγ) upon receptor stimulation. Immunity 12, 301–311 (2000).
    Article CAS Google Scholar
  9. Hsu, H., Huang, J., Shu, H. B., Baichwal, V. & Goeddel, D. V. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4, 387–396 (1996).
    Article CAS Google Scholar
  10. Kelliher, M. A. et al. The death domain kinase RIP mediates the TNF-induced NF-κB signal. Immunity 8, 297–303 (1998).
    Article CAS Google Scholar
  11. Ting, A. T., Pimentel-Muinos, F. X. & Seed, B. RIP mediates tumor necrosis factor receptor 1 activation of NF-κB but not Fas/APO-1-initiated apoptosis. EMBO J. 15, 6189–6196 (1996).
    Article CAS Google Scholar
  12. Stanger, B. Z., Leder, P., Lee, T. H., Kim, E. & Seed, B. RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 81, 513–523 (1995).
    Article CAS Google Scholar
  13. Lee, F. S., Peters, R. T., Dang, L. C. & Maniatis, T. MEKK1 activates both IκB kinase α and IκB kinase β. Proc. Natl Acad. Sci. USA 95, 9319–9324 (1998).
    Article CAS Google Scholar
  14. Zhao, Q. & Lee, F. S. Mitogen-activated protein kinase/ERK kinase kinases 2 and 3 activate nuclear factor-κB though IκB kinase-α and IκB kinase-β. J. Biol. Chem. 274, 8355–8358 (1999).
    Article CAS Google Scholar
  15. Ninomiya-Tsuji, J. et al. The kinase TAK1 can activate the NIK-I κB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398, 252–256 (1999).
    Article CAS Google Scholar
  16. Woronicz, J. D., Gao, X., Cao, Z., Rothe, M. & Goeddel, D. V. IκB kinase-β: NF-κB activation and complex formation with IκB kinase-α and NIK. Science 278, 866–869 (1997).
    Article CAS Google Scholar
  17. Tojima, Y. et al. NAK is an IκB kinase-activating kinase. Nature 404, 778–782 (2000).
    Article CAS Google Scholar
  18. Yujiri, T. et al. MEK kinase 1 gene disruption alters cell migration and c-Jun NH2-terminal kinase regulation but does not cause a measurable defect in NF-κB activation. Proc. Natl Acad. Sci. USA 97, 7272–7277 (2000).
    Article CAS Google Scholar
  19. Xia, Y. et al. MEK kinase 1 is critically required for c-Jun N-terminal kinase activation by proinflammatory stimuli and growth factor-induced cell migration. Proc. Natl Acad. Sci. USA 97, 5243–5248 (2000).
    Article CAS Google Scholar
  20. Yang, J. et al. Mekk3 is essential for early embryonic cardiovascular development. Nature Genet. 24, 309–313 (2000).
    Article CAS Google Scholar
  21. Li, N. & Karin, M. Ionizing radiation and short wavelength UV activate NF-κB though two distinct mechanisms. Proc. Natl Acad. Sci. USA 95, 13012–13017 (1998).
    Article CAS Google Scholar
  22. Bender, K., Gottlicher, M., Whiteside, S., Rahmsdorf, H. J. & Herrlich, P. Sequential DNA damage-independent and -dependent activation of NF-κB by UV. EMBO J. 17, 5170–5181 (1998).
    Article CAS Google Scholar
  23. Yeh, W. C. et al. Early lethality, functional NF-κB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity 7, 715–725 (1997).
    Article CAS Google Scholar
  24. Beg, A. A. & Baltimore, D. An essential role for NF-κB in preventing TNF-α-induced cell death. Science 274, 782–784 (1996).
    Article CAS Google Scholar
  25. Van Antwerp, D. J., Martin, S. J., Kafri, T., Green, D. R. & Verma, I. M. Suppression of TNF-α-induced apoptosis by NF-κB. Science 274, 787–789 (1996).
    Article CAS Google Scholar
  26. Liu, Z. G., Hsu, H., Goeddel, D. V. & Karin, M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-κB activation prevents cell death. Cell 87, 565–576 (1996).
    Article CAS Google Scholar
  27. Wang, C. Y., Mayo, M. W. & Baldwin, A. S. Jr TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-κB. Science 274, 784–787 (1996).
    Article CAS Google Scholar
  28. Tanaka, M. et al. Embryonic lethality, liver degeneration, and impaired NF-κB activation in IKK-β-deficient mice. Immunity 10, 421–429 (1999).
    Article CAS Google Scholar
  29. Deacon, K. & Blank, J. L. MEK kinase 3 directly activates MKK6 and MKK7, specific activators of the p38 and c-Jun NH2-terminal kinases. J. Biol. Chem. 274, 16604–16610 (1999).
    Article CAS Google Scholar
  30. DiDonato, J. A., Mercurio, F. & Karin, M. Phosphorylation of IκBα precedes but is not sufficient for its dissociation from NF-κB. Mol. Cell Biol. 15, 1302–1311 (1995).
    Article CAS Google Scholar
  31. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983).
    Article CAS Google Scholar

Download references