A link between diabetes and atherosclerosis: Glucose regulates expression of CD36 at the level of translation (original) (raw)
References
Semenkovich, C.F. & Heinecke, J.W. Perspectives in diabetes: the mystery of diabetes and atherosclerosis. Diabetes46, 327–334 (1997). ArticleCAS Google Scholar
Schmidt, A. et al. RAGE: A novel cellular receptor for advanced glycation end products. Diabetes45, 77–80 (1996). Article Google Scholar
Vlassara, H. Recent progress in advanced glycation end products and diabetic complications. Diabetes46, 19–24 (1997). Article Google Scholar
Berliner, J.A. Atherosclerosis: Basic mechanisms. Circulation91, 2488–2496 (1995). ArticleCAS Google Scholar
Boring, L., Gosling, J., Cleary, M. & Charo, I.F. Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature394, 894–897 (1998). ArticleCAS Google Scholar
Witzium, J.L. & Steinberg, D. Role of oxidized low density lipoprotein in atherogenesis. J. Clin. Invest.88, 1785–1792 (1991). Article Google Scholar
Nagy, L., Tontonoz, P., Alvarez, J., Chen, H. & Evans, R. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARγ. Cell93, 229–240 (1998). ArticleCAS Google Scholar
Tontonoz, P., Nagy, L., Alvarez, J., Thomazy, V. & Evans, R. PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell93, 241–252 (1998). ArticleCAS Google Scholar
Endemann, G. et al. CD36 is a receptor for oxidized low density lipoprotein. J. Biol. Chem.268, 11811–11816 (1993). CAS Google Scholar
Huh, H., Pearce, S.F., Yesner, L.M., Schindler, J.L. & Silverstein, R.L. Regulated expression of CD36 during monocyte to macrophage differentiation: potential role of CD36 in foam cell formation. Blood87, 2020–2028 (1996). CASPubMed Google Scholar
Nozaki, S. Reduced uptake of oxidized low density lipoproteins in monocyte-derived macrophages from CD36-deficient subjects. J. Clin. Invest.96, 1859–1865 (1995). ArticleCAS Google Scholar
Podrez, E. et al. Macrophage scavenger receptor CD36 is the major recptor for LDL modified by monocyte-generated reactive nitrogen species. J. Clin. Invest.105, 1095–1108 (2000). ArticleCAS Google Scholar
Febbraio, M. et al. Targeted disruption of the class B scavenger receptor, CD36, protects against atherosclerotic lesion development in mice. J. Clin. Invest.105, 1049–1056 (2000). ArticleCAS Google Scholar
Spiegelman, A. PPARγ in monocytes: less pain, any gain? Cell93, 153–155 (1998). ArticleCAS Google Scholar
Greenwalt, D.E., Scheck, S.H. & Rhinehart-Jones, T. Heart CD36 expression is increased in murine models of diabetes and in mice fed a high fat diet. J. Clin. Invest.96, 1382–1388 (1995). ArticleCAS Google Scholar
McCaffrey, T. et al. Decreased Type II/Type I TGF-β1 receptor ratio in cells derived from human atherosclerotic lesions: Conversion from an antiproliferative to profibrotic response to TGF-β1. J. Clin. Invest.96, 2667–2675 (1995). ArticleCAS Google Scholar
Kolm-Litty, V., Sauer, U., Nerlich, A., Lehmann, R. & Scheicher, E.D. High glucose-induced transforming growth factor b-1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells. J. Clin. Invest.101, 160–169 (1998). ArticleCAS Google Scholar
Ashe, M., DeLong, S. & Sachs, A. Glucose depletion rapidly inhibits translation initiation in yeast. Mol. Biol. Cell11, 833–848 (2000). ArticleCAS Google Scholar
Skelly, R.H., Schuppin, G.T., Ishihara, H., Oka, Y. & Rhodes, C.J. Glucose-regulated translational control of proinsulin biosynthesis with that of the proinsulin endopeptidases PC2 and PC3 in the insulin-producing MIN6 cell line. Diabetes45, 37–43 (1996). ArticleCAS Google Scholar
Iynedjian, P.B. et al. Differential expression and regulation of the glucokinase gene in liver and islets of Langerhans. Proc. Natl. Acad. Sci. USA86, 7838–7842 (1989). ArticleCAS Google Scholar
Semenkovich, C.F., Coleman, T. & Fiedorek, F.T.J. Human fatty acid synthase mRNA: tissue distribution, genetic mapping, and kinetics of decay after glucose deprivation. J. Lipid Res.36, 1507–1520 (1995). CASPubMed Google Scholar
Guest, P.C., Bailyes, E.M., Rutherford, N.G. & Hutton, J.C. Insulin secretory granule biogenesis. Co-ordinate regulation of the biosynthesis of the majority of constituent proteins. Biochem J.274, 73–78 (1991). ArticleCAS Google Scholar
Hinnebusch, A.G. in Translational Control (eds. Hershey, J.W.B., Mathews, M.B. & Sonenberg, N.) 199–244 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1996). Google Scholar
Gilligan, M. et al. Glucose stimulates the activity of the guanine nucleotide-exchange factor eIF-2B in isolated rat islets of Langerhans. J. Biol. Chem.271, 2121–2125 (1996). ArticleCAS Google Scholar
Morris, D. & Geballe, A. Upstream open reading frames as regulators of mRNA translation. Mol. Cell. Biol.20, 8635–8642 (2000). ArticleCAS Google Scholar
Abastado, J., Miller, P., Jackson, B. & Hinnebusch, A. Suppression of ribosomal reinitiation at upstream open reading frames in amino acid-starved cells forms the basis for GCN4 translational control. Mol. Cell. Biol.11, 486–496 (1991). ArticleCAS Google Scholar
Laakso, M. & Muusisto, J. Epidemiological evidence for the association of hyperglycemia and atherosclerotic vascular disease in non-insulin-dependent diabetes mellitus. Ann. Med.28, 415–418 (1996). ArticleCAS Google Scholar
Schmidt, A., Yan, S., Wautier, J. & Stern, D. Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ. Res.84, 489–497 (1999). ArticleCAS Google Scholar
Ohgami, N. et al. CD36, a member of the class B scavenger receptor family, as a receptor for advanced glycation endproducts. J. Biol. Chem.276, 3195–3202 (2001). ArticleCAS Google Scholar
Hunt, J. V., Bottoms, M. A., Clare, K., Skamarauskas, I. T. & Mitchinson, M. Glucose oxidation and low-density lipoprotein-induced macrophage ceroid accumulation: possible implications for diabetic atherosclerosis. Biochem. J.300, 243–249 (1994). ArticleCAS Google Scholar
Aitman, T. et al. Identification of CD36 (FAT) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nature Genet21, 76–83 (1999). ArticleCAS Google Scholar
Febbraio, M. et al. A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism. J. Biol. Chem.274, 19055–19062 (1999). ArticleCAS Google Scholar
Barak, Y. et al. PPARγ is required for placental, cardiac and adipose tissue development. Mol. Cell4, 585–595 (1999). ArticleCAS Google Scholar
Barroso, I. et al. Dominant negative mutations in human PPARγ associated with sever insulin resistance, diabetes mellitus and hypertension. Nature402, 880–883 (1999). ArticleCAS Google Scholar
El-Jack, A., Hamm, J., Pilch, P. & Farmer, S. Reconstitution of insulin-sensitive glucose transport in fibroblasts requires expression of both PPARγ and C/EBPalpha. J. Biol. Chem.274, 7946–7951 (1999). ArticleCAS Google Scholar
Le, S.-Y. & Maizel, J.V.J. A common RNA structural motif involved in the internal initiation of translation of cellular mRNAs. Nucleic Acids Res.25, 362–369 (1997). ArticleCAS Google Scholar
Koromilas, A. E., Lasaris-Karatzas, A. & Sonenberg, N. mRNAs containing extensive secondary structure in their 5′ non-coding region translate efficiently in cells overexpressing initiation factor eIF-4E. EMBO J. 4153–4158 (1992).
Kozak, M. Regulation of translation in eukaryotic systems. Annu. Rev. Cell Biol.8, 197–225 (1996). Article Google Scholar
Davuluri, R., Suzuki, Y., Sugano, S. & Zhang, M.Q. CART Classification of HNuman 5′ UTR Sequences. Genome Research10, 1807–1816 (2000). ArticleCAS Google Scholar
Beaumont, C. et al. Mutation in the iron responsive element of the L ferritin mRNA in a family with dominant hyperferritinaemia and cataract. Nature Genet.11, 444–446 (1995). ArticleCAS Google Scholar
Mach, M., White, M.W., Neubauer, M., Degen, J.L. & Morris, D.R. Isolation of a cDNA clone encoding S-adenosylmethionine decarboxylase: expression of the gene in mitogen-activated lymphocytes. J. Biol. Chem.261, 11697–11703 (1986). CASPubMed Google Scholar
Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K. & Pease, L.R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene77, 51–59 (1989). ArticleCAS Google Scholar
Zuker, M., Mathews, D. & Turner, D. in RNA Biochemistry and Biotechnology (ed. Clark, J.B.) 11–43 (Kluwer Academic, Dordrecht, the Netherlands, 1999). Book Google Scholar
Mathews, D., Sabina, J., Zuker, M. & Turner, D. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol.288, 911–940 (1999). ArticleCAS Google Scholar