A link between diabetes and atherosclerosis: Glucose regulates expression of CD36 at the level of translation (original) (raw)

References

  1. Semenkovich, C.F. & Heinecke, J.W. Perspectives in diabetes: the mystery of diabetes and atherosclerosis. Diabetes 46, 327–334 (1997).
    Article CAS Google Scholar
  2. Schmidt, A. et al. RAGE: A novel cellular receptor for advanced glycation end products. Diabetes 45, 77–80 (1996).
    Article Google Scholar
  3. Vlassara, H. Recent progress in advanced glycation end products and diabetic complications. Diabetes 46, 19–24 (1997).
    Article Google Scholar
  4. Berliner, J.A. Atherosclerosis: Basic mechanisms. Circulation 91, 2488–2496 (1995).
    Article CAS Google Scholar
  5. Boring, L., Gosling, J., Cleary, M. & Charo, I.F. Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394, 894–897 (1998).
    Article CAS Google Scholar
  6. Witzium, J.L. & Steinberg, D. Role of oxidized low density lipoprotein in atherogenesis. J. Clin. Invest. 88, 1785–1792 (1991).
    Article Google Scholar
  7. Nagy, L., Tontonoz, P., Alvarez, J., Chen, H. & Evans, R. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARγ. Cell 93, 229–240 (1998).
    Article CAS Google Scholar
  8. Tontonoz, P., Nagy, L., Alvarez, J., Thomazy, V. & Evans, R. PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93, 241–252 (1998).
    Article CAS Google Scholar
  9. Endemann, G. et al. CD36 is a receptor for oxidized low density lipoprotein. J. Biol. Chem. 268, 11811–11816 (1993).
    CAS Google Scholar
  10. Huh, H., Pearce, S.F., Yesner, L.M., Schindler, J.L. & Silverstein, R.L. Regulated expression of CD36 during monocyte to macrophage differentiation: potential role of CD36 in foam cell formation. Blood 87, 2020–2028 (1996).
    CAS PubMed Google Scholar
  11. Nozaki, S. Reduced uptake of oxidized low density lipoproteins in monocyte-derived macrophages from CD36-deficient subjects. J. Clin. Invest. 96, 1859–1865 (1995).
    Article CAS Google Scholar
  12. Podrez, E. et al. Macrophage scavenger receptor CD36 is the major recptor for LDL modified by monocyte-generated reactive nitrogen species. J. Clin. Invest. 105, 1095–1108 (2000).
    Article CAS Google Scholar
  13. Febbraio, M. et al. Targeted disruption of the class B scavenger receptor, CD36, protects against atherosclerotic lesion development in mice. J. Clin. Invest. 105, 1049–1056 (2000).
    Article CAS Google Scholar
  14. Spiegelman, A. PPARγ in monocytes: less pain, any gain? Cell 93, 153–155 (1998).
    Article CAS Google Scholar
  15. Greenwalt, D.E., Scheck, S.H. & Rhinehart-Jones, T. Heart CD36 expression is increased in murine models of diabetes and in mice fed a high fat diet. J. Clin. Invest. 96, 1382–1388 (1995).
    Article CAS Google Scholar
  16. McCaffrey, T. et al. Decreased Type II/Type I TGF-β1 receptor ratio in cells derived from human atherosclerotic lesions: Conversion from an antiproliferative to profibrotic response to TGF-β1. J. Clin. Invest. 96, 2667–2675 (1995).
    Article CAS Google Scholar
  17. Kolm-Litty, V., Sauer, U., Nerlich, A., Lehmann, R. & Scheicher, E.D. High glucose-induced transforming growth factor b-1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells. J. Clin. Invest. 101, 160–169 (1998).
    Article CAS Google Scholar
  18. Ashe, M., DeLong, S. & Sachs, A. Glucose depletion rapidly inhibits translation initiation in yeast. Mol. Biol. Cell 11, 833–848 (2000).
    Article CAS Google Scholar
  19. Skelly, R.H., Schuppin, G.T., Ishihara, H., Oka, Y. & Rhodes, C.J. Glucose-regulated translational control of proinsulin biosynthesis with that of the proinsulin endopeptidases PC2 and PC3 in the insulin-producing MIN6 cell line. Diabetes 45, 37–43 (1996).
    Article CAS Google Scholar
  20. Iynedjian, P.B. et al. Differential expression and regulation of the glucokinase gene in liver and islets of Langerhans. Proc. Natl. Acad. Sci. USA 86, 7838–7842 (1989).
    Article CAS Google Scholar
  21. Semenkovich, C.F., Coleman, T. & Fiedorek, F.T.J. Human fatty acid synthase mRNA: tissue distribution, genetic mapping, and kinetics of decay after glucose deprivation. J. Lipid Res. 36, 1507–1520 (1995).
    CAS PubMed Google Scholar
  22. Guest, P.C., Bailyes, E.M., Rutherford, N.G. & Hutton, J.C. Insulin secretory granule biogenesis. Co-ordinate regulation of the biosynthesis of the majority of constituent proteins. Biochem J. 274, 73–78 (1991).
    Article CAS Google Scholar
  23. Hinnebusch, A.G. in Translational Control (eds. Hershey, J.W.B., Mathews, M.B. & Sonenberg, N.) 199–244 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1996).
    Google Scholar
  24. Gilligan, M. et al. Glucose stimulates the activity of the guanine nucleotide-exchange factor eIF-2B in isolated rat islets of Langerhans. J. Biol. Chem. 271, 2121–2125 (1996).
    Article CAS Google Scholar
  25. Morris, D. & Geballe, A. Upstream open reading frames as regulators of mRNA translation. Mol. Cell. Biol. 20, 8635–8642 (2000).
    Article CAS Google Scholar
  26. Abastado, J., Miller, P., Jackson, B. & Hinnebusch, A. Suppression of ribosomal reinitiation at upstream open reading frames in amino acid-starved cells forms the basis for GCN4 translational control. Mol. Cell. Biol. 11, 486–496 (1991).
    Article CAS Google Scholar
  27. Laakso, M. & Muusisto, J. Epidemiological evidence for the association of hyperglycemia and atherosclerotic vascular disease in non-insulin-dependent diabetes mellitus. Ann. Med. 28, 415–418 (1996).
    Article CAS Google Scholar
  28. Schmidt, A., Yan, S., Wautier, J. & Stern, D. Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ. Res. 84, 489–497 (1999).
    Article CAS Google Scholar
  29. Ohgami, N. et al. CD36, a member of the class B scavenger receptor family, as a receptor for advanced glycation endproducts. J. Biol. Chem. 276, 3195–3202 (2001).
    Article CAS Google Scholar
  30. Hunt, J. V., Bottoms, M. A., Clare, K., Skamarauskas, I. T. & Mitchinson, M. Glucose oxidation and low-density lipoprotein-induced macrophage ceroid accumulation: possible implications for diabetic atherosclerosis. Biochem. J. 300, 243–249 (1994).
    Article CAS Google Scholar
  31. Aitman, T. et al. Identification of CD36 (FAT) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nature Genet 21, 76–83 (1999).
    Article CAS Google Scholar
  32. Febbraio, M. et al. A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism. J. Biol. Chem. 274, 19055–19062 (1999).
    Article CAS Google Scholar
  33. Barak, Y. et al. PPARγ is required for placental, cardiac and adipose tissue development. Mol. Cell 4, 585–595 (1999).
    Article CAS Google Scholar
  34. Barroso, I. et al. Dominant negative mutations in human PPARγ associated with sever insulin resistance, diabetes mellitus and hypertension. Nature 402, 880–883 (1999).
    Article CAS Google Scholar
  35. El-Jack, A., Hamm, J., Pilch, P. & Farmer, S. Reconstitution of insulin-sensitive glucose transport in fibroblasts requires expression of both PPARγ and C/EBPalpha. J. Biol. Chem. 274, 7946–7951 (1999).
    Article CAS Google Scholar
  36. Le, S.-Y. & Maizel, J.V.J. A common RNA structural motif involved in the internal initiation of translation of cellular mRNAs. Nucleic Acids Res. 25, 362–369 (1997).
    Article CAS Google Scholar
  37. Koromilas, A. E., Lasaris-Karatzas, A. & Sonenberg, N. mRNAs containing extensive secondary structure in their 5′ non-coding region translate efficiently in cells overexpressing initiation factor eIF-4E. EMBO J. 4153–4158 (1992).
  38. Kozak, M. Regulation of translation in eukaryotic systems. Annu. Rev. Cell Biol. 8, 197–225 (1996).
    Article Google Scholar
  39. Davuluri, R., Suzuki, Y., Sugano, S. & Zhang, M.Q. CART Classification of HNuman 5′ UTR Sequences. Genome Research 10, 1807–1816 (2000).
    Article CAS Google Scholar
  40. Beaumont, C. et al. Mutation in the iron responsive element of the L ferritin mRNA in a family with dominant hyperferritinaemia and cataract. Nature Genet. 11, 444–446 (1995).
    Article CAS Google Scholar
  41. Mach, M., White, M.W., Neubauer, M., Degen, J.L. & Morris, D.R. Isolation of a cDNA clone encoding S-adenosylmethionine decarboxylase: expression of the gene in mitogen-activated lymphocytes. J. Biol. Chem. 261, 11697–11703 (1986).
    CAS PubMed Google Scholar
  42. Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K. & Pease, L.R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59 (1989).
    Article CAS Google Scholar
  43. Zuker, M., Mathews, D. & Turner, D. in RNA Biochemistry and Biotechnology (ed. Clark, J.B.) 11–43 (Kluwer Academic, Dordrecht, the Netherlands, 1999).
    Book Google Scholar
  44. Mathews, D., Sabina, J., Zuker, M. & Turner, D. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911–940 (1999).
    Article CAS Google Scholar

Download references