Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts (original) (raw)

References

  1. Heath, J. P. & Holifield, B. F. Cell locomotion: new research tests old ideas on membrane and cytoskeletal flow. Cell Motil. Cytoskeleton 18, 245–257 (1991).
    Article CAS Google Scholar
  2. Mitchison, T. J. & Cramer, L. P. Actin-based cell motility and cell locomotion. Cell 84, 371–379 (1996).
    Article CAS Google Scholar
  3. Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1997).
    Article CAS Google Scholar
  4. Vasiliev, J. M. et al. Effect of colcemid on the locomotory behaviour of fibroblasts . J. Embryol. Exp. Morph. 24, 625– 690 (1970).
    CAS Google Scholar
  5. Bershadsky, A. D., Vaisberg, E. A. & Vasiliev, J. M. Pseudopodial activity at the active edge of migrating fibroblast is decreased after drug-induced microtubule depolymerization. Cell Motil. Cytoskeleton 19, 152–158 (1991).
    Article CAS Google Scholar
  6. Vasiliev, J. M. Polarization of pseudopodial activities: cytoskeletal mechanisms. J. Cell Sci. 98, 1–4 ( 1991).
    PubMed Central Google Scholar
  7. Rinnerthaler, G., Geiger, B. & Small, J. Contact formation during fibroblast locomotion: involvement of membrane ruffles and microtubules. J. Cell Biol. 106, 747–760 (1988).
    Article CAS Google Scholar
  8. Rodionov, V. I. et al. Microtubule-dependent control of cell shape and pseudopodial activity is inhibited by the antibody to kinesin motor domain. J. Cell Biol. 123, 1811–1820 (1993).
    Article CAS Google Scholar
  9. Bretscher, M. S. Getting membrane flow and the cytoskeleton to cooperate. Cell 87, 601–606 (1996).
    Article CAS Google Scholar
  10. Singer, S. J. & Kupfer, A. The directed migration of eukaryotic cells. Annu. Rev. Cell Biol. 2, 337– 365 (1986).
    Article CAS Google Scholar
  11. Liao, G., Nagasaki, T. & Gundersen, G. G. Low concentrations of nocodazole interfere with fibroblast locomotion without significantly affecting microtubule level: implications for the role of dynamic microtubules in cell locomotion. J. Cell Sci. 108, 3473–3483 ( 1995).
    CAS Google Scholar
  12. Waterman-Storer, C. M. & Salmon, E. D. Actomyosin-based retrograde flow of microtubules in the lamella of migrating epithelial cells influences microtubule dynamic instability and turnover and is associated with microtubule breakage and treadmilling. J. Cell Biol. 139, 417 –434 (1997).
    Article CAS Google Scholar
  13. Bloom, G. S. & Goldstein, L. S. Cruising along microtubule highways: how membranes move through the secretory pathway. J. Cell Biol. 140, 1277–1280 (1998).
    Article CAS Google Scholar
  14. Schiff, P. B. & Horwitz, S. B. Taxol stabilizes microtubules in mouse fibroblast cells. Proc. Natl Acad. Sci. USA 77, 1561–1565 (1980).
    Article CAS Google Scholar
  15. Ridley, A. J., Paterson, H. F.,, Johnston, C. L., Diekmann, D. & Hall, A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401–410 (1992).
    Article CAS Google Scholar
  16. Machesky, L. M. & Hall, A. Role of actin polymerization and adhesion to extracellular matrix in Rac- and Rho-induced cytoskeletal reorganization. J. Cell Biol. 138, 913– 926 (1997).
    Article CAS Google Scholar
  17. Van Aelst, L. & D’Souza-Schorey, C. Rho GTPases and signaling networks. Genes Dev. 11, 2295– 2322 (1997).
    Article CAS Google Scholar
  18. Nobes, C. D., Hawkins, P., Stephens, L. & Hall, A. Activation of the small GTP-binding proteins rho and rac by growth factor receptors. J. Cell Sci. 108, 225–233 (1995).
    CAS Google Scholar
  19. Nobes, C. D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).
    Article CAS Google Scholar
  20. Bagrodia, S., Taylor, S. J., Jordon, K.A., Van Aelst, L. & Cerione, R. A. A novel regulator of p21-activated kinases. J. Biol. Chem 273, 23633– 23636 (1998).
    Article CAS Google Scholar
  21. Burbelo, P. D., Drechsel, D. & Hall, A. A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases. J. Biol. Chem. 270, 29071–29074 ( 1995).
    Article CAS Google Scholar
  22. Best, A., Ahmed, S., Kozma, R. & Lim, L. The Ras-related GTPase Rac1 binds tubulin. J. Biol. Chem 271, 3756 –3762 (1996).
    Article CAS Google Scholar
  23. Ren, Y., Li, R., Zheng, Y. & Busch, H. Cloning and characterization of GEF-H1, a microtubule-associated guanine nucleotide exchange factor for Rac and Rho GTPases. J. Biol. Chem. 273, 34954–34960 (1998).
    Article CAS Google Scholar
  24. Fernandez, J. A. et al. Phosphorylation- and actvitation-independent association of the tyrosine kinase Syk and the tyrosine kinase substrates Cbl and Vav with tubulin in B-cells. J. Biol. Chem. 274, 1401–1406 (1999).
    Article CAS Google Scholar
  25. Glaven, J. A., Whitehead, I., Bagrodia, S., Kay, R. & Cerione, R. A. The Dbl-related protein, Lfc, localizes to microtubules and mediates the activation of Rac signaling pathways in cells. J. Biol. Chem 274, 2279-2285 (1999).
    Article Google Scholar
  26. Nagata, K. et al. The MAP kinase kinase kinase MLK2 co-localizes with activated JNK along microtubules and associates with kinesin superfamily motor KIF3 . EMBO J. 17, 149–158 (1998).
    Article CAS Google Scholar
  27. Perez, F., Diamantopoulos, G. S., Stalder, R. & Kreis, T. E. Clip-170 highlights growing microtubule ends in vivo. Cell 96, 517–552 ( 1999).
    Article CAS Google Scholar
  28. Gauthier-Rouviere, C. et al. RhoG GTPase controls a pathway that independently activates Rac1 and Cdc42 Hs. Mol. Biol. Cell 9, 1379 –1394 (1998).
    Article CAS Google Scholar
  29. Enomoto, T. Microtubule disruption indcues the formation of actin stress fibers and focal adhesions in cultured cells: possible involvement of the Rho signal cascade . Cell Struct. Funct. 21, 317– 326 (1996).
    Article CAS Google Scholar
  30. Zhang, Q., Magnusson, M. K. & Mosher, D. F. Lysophosphatidic acid and microtubule-destabilizing agents stimulate fibronectin matrix assembly through Rho-dependent actin stress fiber formation and cell contraction,. Mol. Biol. Cell 8, 1415–1425 (1997).
    Article CAS Google Scholar
  31. Liu, B., Chrzanowska-Wodnicka, M. & Burridge, K. Microtubule depolymerization induces stress fibers, focal adhesions, and DNA synthesis via the GTP-binding protein Rho . Cell Adhesion Commun. 5, 249– 255 (1998).
    Article CAS Google Scholar
  32. Ren, X.-D., Kiosses, W. B. & Schwartz, M. A. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J. 18, 578–585 (1999).
    Article CAS Google Scholar
  33. Waterman-Storer, C. M. & Salmon, E. D. Positive feedback interactions between microtubule and actin dynamics during cell motility. Curr. Opin. Cell Biol. 11, 61–67 (1999).
    Article CAS Google Scholar
  34. Waterman-Storer, C. M., Desai, A., Bulinski, J. C. & Salmon, E. D. Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. Curr. Biol. 8, 1227–1230 (1998).
    Article CAS Google Scholar
  35. Self, A. J. & Hall, A. Purification of recombinant Rho/Rac/G25K from Escherichia coli. Methods Enzymol. 256, 3–10 (1995).
    Article CAS Google Scholar
  36. Salmon, E. D. et al. A high-resolution multimode digital microscope system. Methods Cell Biol. 56, 185–215 (1998).
    Article CAS Google Scholar

Download references