Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts (original) (raw)
References
Heath, J. P. & Holifield, B. F. Cell locomotion: new research tests old ideas on membrane and cytoskeletal flow. Cell Motil. Cytoskeleton18, 245–257 (1991). ArticleCAS Google Scholar
Mitchison, T. J. & Cramer, L. P. Actin-based cell motility and cell locomotion. Cell84, 371–379 (1996). ArticleCAS Google Scholar
Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol.13, 83–117 (1997). ArticleCAS Google Scholar
Vasiliev, J. M. et al. Effect of colcemid on the locomotory behaviour of fibroblasts . J. Embryol. Exp. Morph.24, 625– 690 (1970). CAS Google Scholar
Bershadsky, A. D., Vaisberg, E. A. & Vasiliev, J. M. Pseudopodial activity at the active edge of migrating fibroblast is decreased after drug-induced microtubule depolymerization. Cell Motil. Cytoskeleton19, 152–158 (1991). ArticleCAS Google Scholar
Vasiliev, J. M. Polarization of pseudopodial activities: cytoskeletal mechanisms. J. Cell Sci.98, 1–4 ( 1991). PubMed Central Google Scholar
Rinnerthaler, G., Geiger, B. & Small, J. Contact formation during fibroblast locomotion: involvement of membrane ruffles and microtubules. J. Cell Biol. 106, 747–760 (1988). ArticleCAS Google Scholar
Rodionov, V. I. et al. Microtubule-dependent control of cell shape and pseudopodial activity is inhibited by the antibody to kinesin motor domain. J. Cell Biol.123, 1811–1820 (1993). ArticleCAS Google Scholar
Bretscher, M. S. Getting membrane flow and the cytoskeleton to cooperate. Cell87, 601–606 (1996). ArticleCAS Google Scholar
Singer, S. J. & Kupfer, A. The directed migration of eukaryotic cells. Annu. Rev. Cell Biol.2, 337– 365 (1986). ArticleCAS Google Scholar
Liao, G., Nagasaki, T. & Gundersen, G. G. Low concentrations of nocodazole interfere with fibroblast locomotion without significantly affecting microtubule level: implications for the role of dynamic microtubules in cell locomotion. J. Cell Sci.108, 3473–3483 ( 1995). CAS Google Scholar
Waterman-Storer, C. M. & Salmon, E. D. Actomyosin-based retrograde flow of microtubules in the lamella of migrating epithelial cells influences microtubule dynamic instability and turnover and is associated with microtubule breakage and treadmilling. J. Cell Biol.139, 417 –434 (1997). ArticleCAS Google Scholar
Bloom, G. S. & Goldstein, L. S. Cruising along microtubule highways: how membranes move through the secretory pathway. J. Cell Biol.140, 1277–1280 (1998). ArticleCAS Google Scholar
Schiff, P. B. & Horwitz, S. B. Taxol stabilizes microtubules in mouse fibroblast cells. Proc. Natl Acad. Sci. USA77, 1561–1565 (1980). ArticleCAS Google Scholar
Ridley, A. J., Paterson, H. F.,, Johnston, C. L., Diekmann, D. & Hall, A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell70, 401–410 (1992). ArticleCAS Google Scholar
Machesky, L. M. & Hall, A. Role of actin polymerization and adhesion to extracellular matrix in Rac- and Rho-induced cytoskeletal reorganization. J. Cell Biol.138, 913– 926 (1997). ArticleCAS Google Scholar
Van Aelst, L. & D’Souza-Schorey, C. Rho GTPases and signaling networks. Genes Dev.11, 2295– 2322 (1997). ArticleCAS Google Scholar
Nobes, C. D., Hawkins, P., Stephens, L. & Hall, A. Activation of the small GTP-binding proteins rho and rac by growth factor receptors. J. Cell Sci.108, 225–233 (1995). CAS Google Scholar
Nobes, C. D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell81, 53–62 (1995). ArticleCAS Google Scholar
Bagrodia, S., Taylor, S. J., Jordon, K.A., Van Aelst, L. & Cerione, R. A. A novel regulator of p21-activated kinases. J. Biol. Chem273, 23633– 23636 (1998). ArticleCAS Google Scholar
Burbelo, P. D., Drechsel, D. & Hall, A. A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases. J. Biol. Chem.270, 29071–29074 ( 1995). ArticleCAS Google Scholar
Best, A., Ahmed, S., Kozma, R. & Lim, L. The Ras-related GTPase Rac1 binds tubulin. J. Biol. Chem271, 3756 –3762 (1996). ArticleCAS Google Scholar
Ren, Y., Li, R., Zheng, Y. & Busch, H. Cloning and characterization of GEF-H1, a microtubule-associated guanine nucleotide exchange factor for Rac and Rho GTPases. J. Biol. Chem.273, 34954–34960 (1998). ArticleCAS Google Scholar
Fernandez, J. A. et al. Phosphorylation- and actvitation-independent association of the tyrosine kinase Syk and the tyrosine kinase substrates Cbl and Vav with tubulin in B-cells. J. Biol. Chem.274, 1401–1406 (1999). ArticleCAS Google Scholar
Glaven, J. A., Whitehead, I., Bagrodia, S., Kay, R. & Cerione, R. A. The Dbl-related protein, Lfc, localizes to microtubules and mediates the activation of Rac signaling pathways in cells. J. Biol. Chem274, 2279-2285 (1999). Article Google Scholar
Nagata, K. et al. The MAP kinase kinase kinase MLK2 co-localizes with activated JNK along microtubules and associates with kinesin superfamily motor KIF3 . EMBO J.17, 149–158 (1998). ArticleCAS Google Scholar
Perez, F., Diamantopoulos, G. S., Stalder, R. & Kreis, T. E. Clip-170 highlights growing microtubule ends in vivo. Cell96, 517–552 ( 1999). ArticleCAS Google Scholar
Gauthier-Rouviere, C. et al. RhoG GTPase controls a pathway that independently activates Rac1 and Cdc42 Hs. Mol. Biol. Cell9, 1379 –1394 (1998). ArticleCAS Google Scholar
Enomoto, T. Microtubule disruption indcues the formation of actin stress fibers and focal adhesions in cultured cells: possible involvement of the Rho signal cascade . Cell Struct. Funct.21, 317– 326 (1996). ArticleCAS Google Scholar
Zhang, Q., Magnusson, M. K. & Mosher, D. F. Lysophosphatidic acid and microtubule-destabilizing agents stimulate fibronectin matrix assembly through Rho-dependent actin stress fiber formation and cell contraction,. Mol. Biol. Cell8, 1415–1425 (1997). ArticleCAS Google Scholar
Liu, B., Chrzanowska-Wodnicka, M. & Burridge, K. Microtubule depolymerization induces stress fibers, focal adhesions, and DNA synthesis via the GTP-binding protein Rho . Cell Adhesion Commun.5, 249– 255 (1998). ArticleCAS Google Scholar
Ren, X.-D., Kiosses, W. B. & Schwartz, M. A. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J.18, 578–585 (1999). ArticleCAS Google Scholar
Waterman-Storer, C. M. & Salmon, E. D. Positive feedback interactions between microtubule and actin dynamics during cell motility. Curr. Opin. Cell Biol.11, 61–67 (1999). ArticleCAS Google Scholar
Waterman-Storer, C. M., Desai, A., Bulinski, J. C. & Salmon, E. D. Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. Curr. Biol.8, 1227–1230 (1998). ArticleCAS Google Scholar
Self, A. J. & Hall, A. Purification of recombinant Rho/Rac/G25K from Escherichia coli. Methods Enzymol.256, 3–10 (1995). ArticleCAS Google Scholar
Salmon, E. D. et al. A high-resolution multimode digital microscope system. Methods Cell Biol.56, 185–215 (1998). ArticleCAS Google Scholar