Determination of protease cleavage site motifs using mixture-based oriented peptide libraries (original) (raw)
Matthews, D.J. & Wells, J.A. Substrate phage: selection of protease substrates by monovalent phage display. Science260, 1113–1117 (1993). ArticleCASPubMed Google Scholar
Smith, M.M., Shi, L. & Navre, M. Rapid identification of highly active and selective substrates for stromelysin and matrilysin using bacteriophage display libraries. J. Biol. Chem.270, 6440–6449 (1995). ArticleCASPubMed Google Scholar
Rano, T.A. et al. A combinatorial approach for determining protease specificities: application to interleukin-1β converting enzyme (ICE). Chem. Biol.4, 149–155 (1996). Article Google Scholar
Backes, B.J., Harris, J.L., Leonetti, F., Craik, C.S. & Ellman, J.A. Synthesis of positional-scanning libraries of fluorogenic peptide substrates to define the extended substrate specificity of plasmin and thrombin. Nat. Biotechnol.18, 187–193 (2000). ArticleCASPubMed Google Scholar
Harris, J.L. et al. Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc. Natl. Acad. Sci. USA97, 7754–7759 (2000). ArticleCASPubMedPubMed Central Google Scholar
Birkett, A.J. et al. Determination of enzyme specificity in a complex mixture of peptide substrates by N-terminal sequence analysis. Anal. Biochem.196, 137–143 (1991). ArticleCASPubMed Google Scholar
Petithory, J.R., Masiarz, F.R., Kirsch, J.F., Santi, D.V. & Malcolm, B.A. A rapid method for determination of endoproteinase substrate specificity: Specificity of the 3C proteinase from hepatitis A virus. Proc. Natl. Acad. Sci. USA88, 11510–11514 (1991). ArticleCASPubMedPubMed Central Google Scholar
Arnold, D. et al. Substrate specificity of cathepsins D and E determined by N-terminal and C-terminal sequencing of peptide pools. Eur. J. Biochem.249, 171–179 (1997). ArticleCASPubMed Google Scholar
Berman, J. et al. Rapid optimization of enzyme substrates using defined substrate mixtures. J. Biol. Chem.267, 1434–1437 (1992). CASPubMed Google Scholar
Songyang, Z. et al. SH2 domains recognize specific phosphopeptide sequences. Cell72, 767–778 (1993). ArticleCASPubMed Google Scholar
Songyang, Z. et al. Use of an oriented peptide library to determine the optimal substrates of protein kinases. Curr. Biol.4, 973–982 (1994). ArticleCASPubMed Google Scholar
Songyang, Z. et al. Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science275, 73–77 (1997). ArticleCASPubMed Google Scholar
Yaffe, M. B. et al. The structural basis for 14-3-3:phosphopeptide binding specificity. Cell91, 961–971 (1997). ArticleCASPubMed Google Scholar
Johnson, L.L., Dyer, R. & Hupe, D.J. Matrix metalloproteinases. Curr. Opin. Chem. Biol.2, 466–471 (1998). ArticleCASPubMed Google Scholar
Woessner, J.F. & Nagase, H. Matrix metalloproteinases and TIMPs. (Oxford University Press, Oxford, UK; 2000). Google Scholar
Nagase, H. & Fields, G.B. Human matrix metalloproteinase specificity studies using collagen sequence-based synthetic peptides. Biopolymers40, 399–416 (1996). ArticleCASPubMed Google Scholar
Fields, G.B., Van Wart, H.E. & Birkedal-Hansen, H. Sequence specificity of human skin fibroblast collagenase. J. Biol. Chem.262, 6221–6226 (1987). CASPubMed Google Scholar
Teahan, J., Harrison, R., Izquierdo, M. & Stein, R.L. Substrate specificity of human fibroblast stromelysin. Hydrolysis of substance P and its analogues. Biochemistry28, 8497–8501 (1989). ArticleCASPubMed Google Scholar
Netzel-Arnett, S., Fields, G., Birkedal-Hansen, H. & Van Wart, H.E. Sequence specificities of human fibroblast and neutrophil collagenases. J. Biol. Chem.266, 6747–6755 (1991). CASPubMed Google Scholar
Niedzwiecki, L, Teahan, J., Harrison, R.K. & Stein, R.L. Substrate specificity of the human matrix metalloproteinase stromelysin and the development of continuous fluorometric assays. Biochemistry31, 12618–12623 (1992). ArticleCASPubMed Google Scholar
Netzel-Arnett, S. et al. Comparative sequence specificities of human 72- and 92-kDa gelatinases (type IV collagenases) and PUMP (matrilysin). Biochemistry32, 6427–6432 (1993). ArticleCASPubMed Google Scholar
Nagase, H., Fields, C.G. & Fields, G.B. Design and characterization of a fluorogenic substrate selectively hydrolyzed by stromelysin 1 (matrix metalloproteinase-3). J. Biol. Chem.269, 20952–20957 (1994). CASPubMed Google Scholar
Deng, S.-J. et al. Substrate specificity of human collagenase 3 assessed using a phage-displayed peptide library. J. Biol. Chem.275, 31422–31427 (2000). ArticlePubMed Google Scholar
McGeehan, G.M. et al. Characterization of the peptide substrate specificities of interstitial collagenase and 92-kDa gelatinase: implications for substrate optimization. J. Biol. Chem.269, 32814–32820 (1994). CASPubMed Google Scholar
Schechter, I. & Berger, A. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun.27, 157–62 (1967). ArticleCASPubMed Google Scholar
Welch, A.R. et al. Understanding the P1' specificity of the matrix metalloproteinases: effect of S1' pocket mutations in matrilysin and stromelysin-1. Biochemistry35, 10103–10109 (1996). ArticleCASPubMed Google Scholar
Yaffe, M.B. et al. A motif-based profile scanning approach for genome-wide prediction of signaling pathways. Nat. Biotechnol.19, 348–353 (2001). ArticleCASPubMed Google Scholar
Liu, Z. et al. The serpin α1-proteinase inhibitor is a critical substrate for gelatinase B/MMP-9 in vivo. Cell102, 647–655 (2000). ArticleCASPubMed Google Scholar
Desrochers, P.E., Mookhtiar, K., Van Wart, H.E., Hasty, K.A. & Weiss, S.J. Proteolytic inactivation of α1-proteinase inhibitor and α1-antichymotrypsin by oxidatively activated human neutrophil metalloproteinases. J. Biol. Chem.267, 5005–5012 (1992). CASPubMed Google Scholar
von Bredow, D.C., Nagle, R.B., Bowden, G.T. & Cress, A.E. Cleavage of β4 integrin by matrilysin. Exp. Cell Res.236, 341–345 (1997). ArticleCASPubMed Google Scholar
Rauch, U., Karthikeyan, L., Maurel, P., Margolis, R.U. & Margolis, R.K. Cloning and primary structure of neurocan, a developmentally regulated, aggregating chondroitin sulfate proteoglycan of brain. J. Biol. Chem.267, 19536–19547 (1992). CASPubMed Google Scholar
Meyer-Puttlitz, B. et al. Chondroitin sulfate and chondroitin/keratan sulfate proteoglycans of nervous tissue: developmental changes of neurocan and phosphacan. J. Neurochem.65, 2327–2337 (1995). ArticleCASPubMed Google Scholar
Mucha, A. et al. Membrane type-1 matrix metalloprotease and stromelysin-3 cleave more efficiently synthetic substrates containing unusual amino acids in their P1′ positions. J. Biol. Chem.273, 2763–2768 (1998). ArticleCASPubMed Google Scholar
Ridky, T.W. et al. Human immunodeficiency virus, type 1 protease substrate specificity is limited by interactions between substrate amino acids bound in adjacent enzyme subsites. J. Biol. Chem.271, 4709–4717 (1996). ArticleCASPubMed Google Scholar
Rauch, U. et al. Isolation and characterization of developmentally regulated chondroitin sulfate and chondroitin/keratan sulfate proteoglycans of brain identified with monoclonal antibodies. J. Biol. Chem.266, 14785–14801 (1991). CASPubMed Google Scholar
Fernandez-Patron, C., Radomski, M.W. & Davidge, S.T. Vascular matrix metalloproteinase-2 cleaves big endothelin-1 yielding a novel vasoconstrictor. Circ. Res.85, 906–911 (1999). ArticleCASPubMed Google Scholar
Nakamura, H. et al. Brevican is degraded by matrix metalloproteinases and aggrecanase-1 (ADAMTS4) at different sites. J. Biol. Chem.275, 38885–38890 (2000). ArticleCASPubMed Google Scholar
McQuibban, G.A. et al. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science289, 1202–1206 (2000). ArticleCASPubMed Google Scholar
Sasaki, T. et al. Limited cleavage of extracellular matrix protein BM-40 by matrix metalloproteinases increases its affinity for collagens. J. Biol. Chem.272, 9237–9243 (1997). ArticleCASPubMed Google Scholar