Transcription factor LKLF is sufficient to program T cell quiescence via a c-Myc–dependent pathway (original) (raw)
References
Abbas, A. K., Lichtman, A. H. & Pober, J. S. Cellular and Molecular Immunology, 2nd edn (W.B. Saunders, London, 1994). Google Scholar
Freitas, A. A. & Rocha, B. Population biology of lymphocytes: the flight for survival. Annu. Rev. Immunol . 18, 83–111 (2000). ArticleCAS Google Scholar
Perkins, A. Erythroid Krüppel-like factor: from fishing expedition to gourmet meal. Int. J. Biochem. Cell Biol.31, 1175–1192 (1999). ArticleCAS Google Scholar
Segre, J., Bauer C. & Fuchs, E. Klf4 is a transcription factor required for establishing the barrier function of skin. Nature Genet.22, 356–360 (1999). ArticleCAS Google Scholar
Kuo, C. T. et al. The LKLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis. Genes Dev.11, 2996–3006 (1997). ArticleCAS Google Scholar
Coghill, E. et al. Erythroid Krüppel-like factor (EKLF) coordinates erythroid cell proliferation and hemoglobinization in cell lines derived from EKLF null mice. Blood97, 1861–1868 (2001). ArticleCAS Google Scholar
Shields, J. M., Christy, R. J. & Yang, V. W. Identification and characterization of a gene encoding a gut-enriched Krüppel-like factor expressed during growth arrest. J. Biol. Chem.271, 20009–20017 (1996). ArticleCAS Google Scholar
Kuo, C. T., Veselits, M. L. & Leiden J. M. LKLF: A transcriptional regulator of single-positive T cell quiescence and survival. Science277, 1986–1990 (1997). ArticleCAS Google Scholar
Schober, S. L. et al. Expression of the transcription factor Lung Krüppel-Like Factor is regulated by cytokines and correlates with survival of memory T cells in vitro and in vivo. J. Immunol.163, 3662–3667 (1999). CASPubMed Google Scholar
Sprent, J. & Surh, C. D. Generation and maintenance of memory T cells. Curr. Opin. Immunol.13, 248–254 (2001). ArticleCAS Google Scholar
Gossen, M. et al. Transcriptional activation by tetracyclines in mammalian cells. Science268, 1766–1769 (1995). ArticleCAS Google Scholar
Berns, K., Hijmans, E. M. & Bernards, R. Repression of c-Myc responsive genes in cycling cells causes G1 arrest through reduction of cyclinE/CDK2 kinase activity. Oncogene15, 1347–1356 (1997). ArticleCAS Google Scholar
Cazzola, M., Bergamaschi, G., Dezza, L. & Arosio, P. Manipulations of cellular iron metabolism for modulating normal and malignant cell proliferation: Achievements and prospects. Blood75, 1903–1908 (1990). CASPubMed Google Scholar
Ellis, T. M., Simms, P. E., Slivnick, D. J., Jäck, H.-M. & Fisher, R. I. CD30 is a signal-transducing molecule that defines a subset of human activated CD45RO T cells. J. Immunol . 151, 2380–2389 (1993). CASPubMed Google Scholar
Aizawa, S. et al. Tumor necrosis factor receptor-associated factor (TRAF) 5 and TRAF 2 are involved in CD30-mediated NFκB activation. J. Biol. Chem.272, 2042–2045 (1997). ArticleCAS Google Scholar
Gilfillan, M. C., Noel, P. J., Podack, E. R., Reiner, S. L. & Thompson, C. B. Expression of the costimulatory receptor CD30 is regulated by both CD28 and cytokines. J. Immunol. 160, 2180–2187 (1998).
Gregory, S. et al. Role of the CD1a molecule in the superantigen-induced activation of MHC class II negative human thymocytes. Hum. Immunol.61, 427–437 (2000). ArticleCAS Google Scholar
Mateyak, M. K., Obaya, A. J. & Sedivy, J. M. c-Myc regulates cyclin D-CDK4 and -CDK6 activity but affects cell cycle progression at multiple independent points. Mol. Cell. Biol.19, 4672–4683 (1999). ArticleCAS Google Scholar
Iritani, B. M. & Eisenman, R. N. c-Myc enhances protein synthesis and cell size during B lymphocyte development. Proc. Natl Acad. Sci. USA96, 13180–13185 (1999). ArticleCAS Google Scholar
Johnston, L. A., Prober, D. A., Edgar, B. A., Eisenman, R. N. & Gallant, P. Drosophila myc regulates cellular growth during development. Cell98, 779–790 (1999). ArticleCAS Google Scholar
Mateyak, M. K., Obaya, A. J., Adachi, S. & Sedivy, J. M. Phenotypes of c-Myc-deficient rat fibroblasts isolated by targeted homologous recombination. Cell Growth Differ . 8, 1039–1048 (1997). CASPubMed Google Scholar
Wu, K.-J., Polack, A. & Dalla-Favera, R. Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by c-Myc. Science283, 676–679 (1999). ArticleCAS Google Scholar
Brunner, T. et al. Expression of Fas ligand in activated T cells is regulated by c-Myc. J. Biol. Chem.275, 9767–9772 (2000). ArticleCAS Google Scholar
Spencer, C. A., LeStrange, R. C., Novak, U., Hayward, W. S. & Groudine, M. The block to transcriptional elongation is promoter dependent in normal and Burkitt's lymphoma c-myc alleles. Genes Dev. 4, 75–88 (1990). ArticleCAS Google Scholar
Sussman, D. J., Chung, J. & Leder, P. In vitro and in vivo analysis of the c-myc RNA polymerase III promoter. Nucleic Acids Res. 19, 5045–5052 (1991). ArticleCAS Google Scholar
Krumm, A., Meulia, T., Brunvand, M. & Groudine, M. The block to transcriptional elongation within the human c-myc gene is determined in the promoter-proximal region. Genes Dev.6, 2201–2213 (1992). ArticleCAS Google Scholar
Ryan, K. M. & Birnie, G. D. Myc oncogenes: the enigmatic family. Biochem. J.314, 713–721 (1996). ArticleCAS Google Scholar
Tripathy, S. K., Goldwasser, E., Lu, M., Barr, E. & Leiden, J. M. Stable delivery of physiologic levels of recombinant erythropoietin to the systemic circulation by intramuscular injection of replication-defective adenovirus. Proc. Natl Acad. Sci. USA91, 11557–11561 (1994). ArticleCAS Google Scholar
Carayon, P. & Bord, A. Identification of DNA-replicating lymphocyte subsets using a new method to label the bromo-deoxyuridine incorporated into the DNA. J. Immunol Meth.147, 225–230 (1992). ArticleCAS Google Scholar