Transcription factor LKLF is sufficient to program T cell quiescence via a c-Myc–dependent pathway (original) (raw)

References

  1. Abbas, A. K., Lichtman, A. H. & Pober, J. S. Cellular and Molecular Immunology, 2nd edn (W.B. Saunders, London, 1994).
    Google Scholar
  2. Freitas, A. A. & Rocha, B. Population biology of lymphocytes: the flight for survival. Annu. Rev. Immunol . 18, 83–111 (2000).
    Article CAS Google Scholar
  3. Perkins, A. Erythroid Krüppel-like factor: from fishing expedition to gourmet meal. Int. J. Biochem. Cell Biol. 31, 1175–1192 (1999).
    Article CAS Google Scholar
  4. Segre, J., Bauer C. & Fuchs, E. Klf4 is a transcription factor required for establishing the barrier function of skin. Nature Genet. 22, 356–360 (1999).
    Article CAS Google Scholar
  5. Kuo, C. T. et al. The LKLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis. Genes Dev. 11, 2996–3006 (1997).
    Article CAS Google Scholar
  6. Coghill, E. et al. Erythroid Krüppel-like factor (EKLF) coordinates erythroid cell proliferation and hemoglobinization in cell lines derived from EKLF null mice. Blood 97, 1861–1868 (2001).
    Article CAS Google Scholar
  7. Shields, J. M., Christy, R. J. & Yang, V. W. Identification and characterization of a gene encoding a gut-enriched Krüppel-like factor expressed during growth arrest. J. Biol. Chem. 271, 20009–20017 (1996).
    Article CAS Google Scholar
  8. Kuo, C. T., Veselits, M. L. & Leiden J. M. LKLF: A transcriptional regulator of single-positive T cell quiescence and survival. Science 277, 1986–1990 (1997).
    Article CAS Google Scholar
  9. Schober, S. L. et al. Expression of the transcription factor Lung Krüppel-Like Factor is regulated by cytokines and correlates with survival of memory T cells in vitro and in vivo. J. Immunol. 163, 3662–3667 (1999).
    CAS PubMed Google Scholar
  10. Sprent, J. & Surh, C. D. Generation and maintenance of memory T cells. Curr. Opin. Immunol. 13, 248–254 (2001).
    Article CAS Google Scholar
  11. Gossen, M. et al. Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769 (1995).
    Article CAS Google Scholar
  12. Berns, K., Hijmans, E. M. & Bernards, R. Repression of c-Myc responsive genes in cycling cells causes G1 arrest through reduction of cyclinE/CDK2 kinase activity. Oncogene 15, 1347–1356 (1997).
    Article CAS Google Scholar
  13. Cazzola, M., Bergamaschi, G., Dezza, L. & Arosio, P. Manipulations of cellular iron metabolism for modulating normal and malignant cell proliferation: Achievements and prospects. Blood 75, 1903–1908 (1990).
    CAS PubMed Google Scholar
  14. Ellis, T. M., Simms, P. E., Slivnick, D. J., Jäck, H.-M. & Fisher, R. I. CD30 is a signal-transducing molecule that defines a subset of human activated CD45RO T cells. J. Immunol . 151, 2380–2389 (1993).
    CAS PubMed Google Scholar
  15. Aizawa, S. et al. Tumor necrosis factor receptor-associated factor (TRAF) 5 and TRAF 2 are involved in CD30-mediated NFκB activation. J. Biol. Chem. 272, 2042–2045 (1997).
    Article CAS Google Scholar
  16. Gilfillan, M. C., Noel, P. J., Podack, E. R., Reiner, S. L. & Thompson, C. B. Expression of the costimulatory receptor CD30 is regulated by both CD28 and cytokines. J. Immunol. 160, 2180–2187 (1998).
  17. Gregory, S. et al. Role of the CD1a molecule in the superantigen-induced activation of MHC class II negative human thymocytes. Hum. Immunol. 61, 427–437 (2000).
    Article CAS Google Scholar
  18. Mateyak, M. K., Obaya, A. J. & Sedivy, J. M. c-Myc regulates cyclin D-CDK4 and -CDK6 activity but affects cell cycle progression at multiple independent points. Mol. Cell. Biol. 19, 4672–4683 (1999).
    Article CAS Google Scholar
  19. Iritani, B. M. & Eisenman, R. N. c-Myc enhances protein synthesis and cell size during B lymphocyte development. Proc. Natl Acad. Sci. USA 96, 13180–13185 (1999).
    Article CAS Google Scholar
  20. Johnston, L. A., Prober, D. A., Edgar, B. A., Eisenman, R. N. & Gallant, P. Drosophila myc regulates cellular growth during development. Cell 98, 779–790 (1999).
    Article CAS Google Scholar
  21. Mateyak, M. K., Obaya, A. J., Adachi, S. & Sedivy, J. M. Phenotypes of c-Myc-deficient rat fibroblasts isolated by targeted homologous recombination. Cell Growth Differ . 8, 1039–1048 (1997).
    CAS PubMed Google Scholar
  22. Wu, K.-J., Polack, A. & Dalla-Favera, R. Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by c-Myc. Science 283, 676–679 (1999).
    Article CAS Google Scholar
  23. Brunner, T. et al. Expression of Fas ligand in activated T cells is regulated by c-Myc. J. Biol. Chem. 275, 9767–9772 (2000).
    Article CAS Google Scholar
  24. Spencer, C. A., LeStrange, R. C., Novak, U., Hayward, W. S. & Groudine, M. The block to transcriptional elongation is promoter dependent in normal and Burkitt's lymphoma c-myc alleles. Genes Dev. 4, 75–88 (1990).
    Article CAS Google Scholar
  25. Sussman, D. J., Chung, J. & Leder, P. In vitro and in vivo analysis of the c-myc RNA polymerase III promoter. Nucleic Acids Res. 19, 5045–5052 (1991).
    Article CAS Google Scholar
  26. Krumm, A., Meulia, T., Brunvand, M. & Groudine, M. The block to transcriptional elongation within the human c-myc gene is determined in the promoter-proximal region. Genes Dev. 6, 2201–2213 (1992).
    Article CAS Google Scholar
  27. Ryan, K. M. & Birnie, G. D. Myc oncogenes: the enigmatic family. Biochem. J. 314, 713–721 (1996).
    Article CAS Google Scholar
  28. Tripathy, S. K., Goldwasser, E., Lu, M., Barr, E. & Leiden, J. M. Stable delivery of physiologic levels of recombinant erythropoietin to the systemic circulation by intramuscular injection of replication-defective adenovirus. Proc. Natl Acad. Sci. USA 91, 11557–11561 (1994).
    Article CAS Google Scholar
  29. Carayon, P. & Bord, A. Identification of DNA-replicating lymphocyte subsets using a new method to label the bromo-deoxyuridine incorporated into the DNA. J. Immunol Meth. 147, 225–230 (1992).
    Article CAS Google Scholar

Download references