VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation (original) (raw)

References

  1. Poole, A.R. in Cartilage: Molecular Aspects (eds. Hall, B.K. & Newman, S.A.) 179–211 (CRC Press, Boca Raton, Florida, 1991).
    Google Scholar
  2. Jee, W.S.S. in Cell and Tissue Biology (ed. Weiss, L.) 213–253 (Urban & Schwarzemberg, New York, 1988).
    Google Scholar
  3. Baron J. et al. Induction of growth plate cartilage ossification by basic fibroblast growth factor. Endocrinology 135, 2790– 2793 (1994).
    Article CAS Google Scholar
  4. Babic A.M., Kireeva M.L., Kolesnikova T.V., & Lau L.F. CYR61, a product of a growth factor-inducible immediate early gene, promotes angiogenesis and tumor growth. Proc. Natl. Acad. Sci. USA 95, 6355–6360 (1998).
    Article CAS Google Scholar
  5. Shinar, D.M., Endo, N., Halperin, D., Rodan, G.A, & Weinreb, M. Differential expression of insulin-like growth factor-I (IGF-I) and IGF-II messenger ribonucleic acid in growing rat bone. Endocrinology 132, 1158–1167 (1993).
    Article CAS Google Scholar
  6. Jingushi, S, Scully, S.P., Joyce, M.E., Sugioka, Y., & Bolander, M.E. Transforming growth factor-beta 1 and fibroblast growth factors in rat growth plate. J. Orthop. Res. 13, 761–768 ( 1995).
    Article CAS Google Scholar
  7. Carlevaro, M.F. et al. Transferrin promotes endothelial cell migration and invasion: implication in cartilage neovascularization J. Cell Biol. 136, 1375–1384 (1997).
    Article CAS Google Scholar
  8. Ferrara, N. & Davis-Smyth, T. The biology of vascular endothelial growth factor. Endocr. Rev. 18, 4– 25 (1997).
    Article CAS Google Scholar
  9. Fong, G. H., Rossant, J., Gertsenstein, M., & Breitman, M. L. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66– 70 (1995).
    Article CAS Google Scholar
  10. Shalaby, F. et al. Failure of blood-island formation and vasculogenesis in Flk-1- deficient mice. Nature 376, 62– 66 (1995).
    Article CAS Google Scholar
  11. Waltenberger, J., Claesson-Welsh, L., Siegbahn, A., Shibuya, M. & Heldin, C.-H. Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor J. Biol. Chem. 268, 26988– 26995 (1994).
    Google Scholar
  12. Keyt, B.A. et al. Identification of VEGF determinants for binding Flt-1 and KDR receptors. Generation of receptor-selective VEGF variants by site-directed mutagenesis. J. Biol. Chem. 271, 5638– 5646 (1996).
    Article CAS Google Scholar
  13. Gerber, H.P. et al. VEGF regulates endothelial cell survival by the PI3-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J. Biol. Chem. 273, 30336–30345 (1998).
    Article CAS Google Scholar
  14. Hiratsuka, S., Minowa, O., Kuno, J., Noda, T., and Shibuya, M. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc. Natl. Acad. Sci. USA 95, 9349–9354 ( 1998).
    Article CAS Google Scholar
  15. Barleon, B. _et al._Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87 3336–3343 ( 1996).
    CAS PubMed Google Scholar
  16. Soker, S., Takashima, S., Miao, H. Q., Neufeld, G., & Klagsbrun, M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92 735–745 (1998).
    Article CAS Google Scholar
  17. Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439– 442 (1996).
    Article CAS Google Scholar
  18. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439 (1996).
    Article CAS Google Scholar
  19. Gerber, H. P. et al. VEGF is required for growth and survival in neonatal mice. Development. 126, 1149– 1159 (1999).
    CAS Google Scholar
  20. Ferrara, N. et al. Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nature Med. 4, 336– 340 (1998).
    Article CAS Google Scholar
  21. Davis-Smyth, T., Chen, H., Park, J., Presta, L.G., & Ferrara, N. The second immunoglobulin-like domain of the VEGF tyrosine kinase receptot Flt-1 determines ligand binding and may initiate a signal transduction cascade. EMBO J. 15 4919– 4927 (1996).
    Article CAS Google Scholar
  22. Ala-Kokko, L., & Prockop, D. J. Completion of the intron-exon structure of the gene for human type II procollagen (COL2A1): variations in the nucleotide sequences of the alleles from three chromosomes. Genomics 8, 454–460 (1990).
    Article CAS Google Scholar
  23. Elima, K. et al. The mouse collagen X gene: complete nucleotide sequence, exon structure and expression pattern. Biochem. J. 289, 247–253 (1993).
    Article CAS Google Scholar
  24. Farnum, C.E. & Wilsman, N.J. Condensation of hypertrophic chondrocytes at the chondro-osseous junction of growth plate cartilage in Yucatan swine: relationship to long bone growth. Am. J. Anat. 186, 346–358 (1989).
    Article CAS Google Scholar
  25. Lewinson, D., & Silberman, M. Chondroclasts and endothelial cells collaborate in the process of cartilage resorption. Anat. Rec. 233, 504–514 ( 1992).
    Article CAS Google Scholar
  26. Vu, T.H. _et al._MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93 , 411–422 (1998).
    Article CAS Google Scholar
  27. Shen, B.Q. et al. Homologous up-regulation of KDR/Flk-1 receptor expression by vascular endothelial growth factor in vitro. J. Biol. Chem. 273, 29979–29985 ( 1998).
    Article CAS Google Scholar
  28. Barleon, B. et al. Vascular endothelial growth factor up-regulates its receptor fms- like tyrosine kinase 1 (FLT-1) and a soluble variant of FLT-1 in human vascular endothelial cells. Cancer Res. 57, 5421–5425 (1997).
    CAS PubMed Google Scholar
  29. Alon, T. et al. Vascular endothelial growth factor acts a s survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nature Med. 1, 1024–1028 (1995).
    Article CAS Google Scholar
  30. Yuan, F. et al. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by anti-VEGF/VPF antibody Proc. Nat. Acad. Sci. USA 93, 14765– 14770 (1996).
    Article CAS Google Scholar
  31. Simionescu, N. & Simionescu, M. in Endothelial Cell Dysfunctions (Plenum, New York, 1992).
    Book Google Scholar
  32. Midy, V. & Plouet, J. Vasculotropin/vascular endothelial growth factor induces differentiation in cultured osteoblasts. Biochem. Biophys. Res. Commun. 199 380– 386 (1994).
    Article CAS Google Scholar
  33. Carmeliet, P., & Collen, D. Vascular development and disorders: molecular analysis and pathogenic insights. Kidney Internat. 53, 1519–1549 (1998).
    Article CAS Google Scholar
  34. Enholm, B., Jussila, L., Karkkainen, M., & Alitalo, K. Vascular endothelial growth factor-C: A growth factor for lymphatic and blood vessel endothelial cells. Trends Cardiovasc. Med. 8 , 292–296 (1998).
    Article CAS Google Scholar
  35. Ryan, A.M. _et al._Preclinical safety evaluation of rhuMAbVEGF, an antiangiogenic humanized monoclonal antibody. Toxicol. Pathol. 27, 78–86 (1999).
    Article CAS Google Scholar
  36. Barness, L.A. in Potter's Pathology of the Fetus and Infant (ed. Gilbert-Barness, E.) 561–563 (Mosby, St. Louis, Missouri, 1997).
    Google Scholar
  37. Schlaeppi, J.M., Gutzwiller, S., Finkenzeller, G., & Fournier, B. 1,25- Dihydroxyvitamin D3 induces the expression of vascular endothelial growth factor in osteoblastic cells. Endocr. Res. 23, 213–229 (1997).
    Article CAS Google Scholar
  38. Maroteaux, P. et al. Opsismodysplasia: a new type of chondrodysplasia with predominant involvement of the bones of the hand and the vertebrae. Am. J. Med. Genet. 19, 171–182 (1984).
    Article CAS Google Scholar
  39. Shehan, D.C. & Hrapchak, B.B. in Theory and Practice of Histotechnology (Lipshaw, 1980).
    Google Scholar
  40. Albrecht, U., Eichele, G., Helms, J. A., & Lu, H. in Molecular and Cellular Methods in Developmental Toxicology (ed. Daston, G.P.) 23–48 (CRC Press, Boca Raton, Florida, 1997).
    Google Scholar
  41. Metsaranta, M., Toman, D., De Crombrugghe, B., & Vuorio, E. Specific hybridization probes for mouse type I, II, III and IX collagen mRNAs. Biochim. Biophys. Acta 1089, 241– 243 (1991).
    Article CAS Google Scholar
  42. Reponen, P., Sahlberg, C., Munaut, C., Thesleff, I., & Tryggvason, K. High expression of 92-kD type IV collagenase (gelatinase B) in the osteoclast lineage during mouse development. J. Cell Biol. 124, 1091–1102 ( 1994).
    Article CAS Google Scholar
  43. Finnerty, H. et al. Molecular cloning of murine FLT and FLT4. Oncogene 8, 2293–2298 ( 1993).
    CAS PubMed Google Scholar
  44. Quinn, T.P., Peters, K.G., deVries, C., Ferrara, N. & Williams, L.T. Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc. Natl. Acad. Sci. USA 90, 7533–7537 (1993).
    Article CAS Google Scholar

Download references