Population coding of shape in area V4 (original) (raw)

References

  1. Ungerleider, L.G. & Mishkin, M. Analysis of Visual Behavior (eds. Ingle, D. G., Goodale, M. A. & Mansfield, R. J. Q.) 549–586 (MIT Press, Cambridge, Massachusetts, 1982).
    Google Scholar
  2. Felleman, D.J. & Van Essen, D.C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).
    Article CAS Google Scholar
  3. Milner, P.M. A model for visual shape recognition. Psychol. Rev. 81, 521–535 (1974).
    Article CAS Google Scholar
  4. Selfridge, O.G. The Mechanization of Thought Processes (H. M. Stationary Office, London, 1959).
    Google Scholar
  5. Sutherland, N.S. Outlines of a theory of visual pattern recognition in animals and man. Proc. R. Soc. Lond. B Biol. Sci. 171, 297–317 (1968).
    Article CAS Google Scholar
  6. Barlow, H.B. Single units and sensation: a neuron doctrine for perceptual psychology? Perception 1, 371–394 (1972).
    Article CAS Google Scholar
  7. Hubel, D.H. & Wiesel, T.N. Receptive fields of single neurones in the cat's striate cortex. J. Physiol. (Lond.) 148, 574–591 (1959).
    Article CAS Google Scholar
  8. Hubel, D.H. & Wiesel, T.N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (Lond.) 195, 215–243 (1968).
    Article CAS Google Scholar
  9. Marr, D. & Nishihara, H.K. Representation and recognition of the spatial organization of three-dimensional shapes. Proc. R. Soc. Lond. B Biol. Sci. 200, 269–294 (1978).
    Article CAS Google Scholar
  10. Hoffman, D.D. & Richards, W.A. Parts of recognition. Cognition 18, 65–96 (1984).
    Article CAS Google Scholar
  11. Biederman, I. Recognition-by-components: a theory of human image understanding. Psychol. Rev. 94, 115–147 (1987).
    Article Google Scholar
  12. Dickinson, S.J., Pentland, A.P. & Rosenfeld, A. From volumes to views: an approach to 3-D object recognition. CVGIP: Image Understanding 55, 130–154 (1992).
    Article Google Scholar
  13. Riesenhuber, M. & Poggio, T. Hierarchical models of object recognition in cortex. Nat. Neurosci. 2, 1019–1025 (1999).
    Article CAS Google Scholar
  14. Tanaka, K., Saito, H., Fukada, Y. & Moriya, M. Coding visual images of objects in the inferotemporal cortex of the macaque monkey. J. Neurophysiol. 66, 170–189 (1991).
    Article CAS Google Scholar
  15. Fujita, I., Tanaka, K., Ito, M. & Cheng, K. Columns for visual features of objects in monkey inferotemporal cortex. Nature 360, 343–346 (1992).
    Article CAS Google Scholar
  16. Tsunoda, K., Yamane, Y., Nishizaki, M. & Tanifuji, M. Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns. Nat. Neurosci. 4, 832–838 (2001).
    Article CAS Google Scholar
  17. Wang, Y., Fujita, I. & Murayama, Y. Neuronal mechanisms of selectivity for object features revealed by blocking inhibition in inferotemporal cortex. Nat. Neurosci. 3, 807–813 (2000).
    Article CAS Google Scholar
  18. Sigala, N. & Logothetis, N.K. Visual categorization shapes feature selectivity in the primate temporal cortex. Nature 415, 318–320 (2002).
    Article CAS Google Scholar
  19. Pasupathy, A. & Connor, C.E. Responses to contour features in macaque area V4. J. Neurophysiol. 82, 2490–2502 (1999).
    Article CAS Google Scholar
  20. Pasupathy, A. & Connor, C.E. Shape representation in area V4: position-specific tuning for boundary conformation. J. Neurophysiol. 86, 2505–2519 (2001).
    Article CAS Google Scholar
  21. Baker, C.I., Behrmann, M. & Olson, C.R. Impact of learning on representation of parts and wholes in monkey inferotemporal cortex. Nat. Neurosci. 5, 1210–1216 (2002).
    Article CAS Google Scholar
  22. Desimone, R. & Schein, S.J. Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form. J. Neurophysiol. 57, 835–868 (1987).
    Article CAS Google Scholar
  23. Gallant, J.L., Braun, J. & Van Essen, D.C. Selectivity for polar, hyperbolic and Cartesian gratings in macaque visual cortex. Science 259, 100–103 (1993).
    Article CAS Google Scholar
  24. Kobatake, E. & Tanaka, K. Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. J. Neurophysiol. 71, 856–867 (1994).
    Article CAS Google Scholar
  25. Zeki, S. Color coding in rhesus monkey prestriate cortex. Brain Res. 53, 422–427 (1973).
    Article CAS Google Scholar
  26. Hanazawa, A. & Komatsu, H. Influence of the direction of elemental luminance gradients on the responses of V4 cells to textured surfaces. J. Neurosci. 21, 4490–4497 (2001).
    Article CAS Google Scholar
  27. Georgopoulos, A.P., Caminiti, R., Kalaska, J.F. & Massey, J.T. Spatial coding of movement: a hypothesis concerning the coding of movement direction by motor cortical populations. Exp. Brain Res. 7 (Suppl.), 327–336 (1983).
    Google Scholar
  28. Lewis, J.E. & Kristan, W.B. Jr. A neuronal network for computing population vectors in the leech. Nature 391, 76–79 (1998).
    Article CAS Google Scholar
  29. Salinas, E. & Abbott, L.F. Vector reconstruction from firing rates. J. Comput. Neurosci. 1, 89–107 (1994).
    Article CAS Google Scholar
  30. Deneve, S., Latham, P.E. & Pouget, A. Reading population codes: a neural implementation of ideal observers. Nat. Neurosci. 2, 740–745 (1999).
    Article CAS Google Scholar
  31. Zhang, K., Ginzburg, I., McNaughton, B.L. & Sejnowski, T.J. Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. J. Neurophysiol. 79, 1017–1044 (1998).
    Article CAS Google Scholar
  32. Olson, C.R. & Gettner, S.N. Brain representation of object-centered space. Curr. Opin. Neurobiol. 6, 165–170 (1996).
    Article CAS Google Scholar
  33. Mardia, K.V. Linear-circular correlation coefficients and rhythmometry. Biometrika 63, 403–405 (1976).
    Article Google Scholar
  34. Bartels, R.H., Beatty, J.C. & Barsky, B.A. An Introduction to Splines for Use in Computer Graphics and Geometric Modeling (Morgan Kaufmann, Los Altos, California, 1987).
    Google Scholar
  35. Rolls, E.T., Treves, A. & Tovee, M.J. The representational capacity of the distributed encoding of information provided by populations of neurons in primate temporal visual cortex. Exp. Brain Res. 114, 149–162 (1997).
    Article CAS Google Scholar
  36. Gochin, P.M., Colombo, M., Dorfman, G.A., Gerstein, G.L. & Gross, C.G. Neural ensemble coding in inferior temporal cortex. J. Neurophysiol. 71, 2325–2337 (1994).
    Article CAS Google Scholar
  37. Young, M.P. & Yamane, S. Sparse population coding of faces in the inferotemporal cortex. Science 256, 1327–1331 (1992).
    Article CAS Google Scholar
  38. Edelman, S. Representation and Recognition in Vision (MIT Press, Cambridge, Massachusetts, 1999).
    Book Google Scholar
  39. Op de Beeck, H., Wagemans, J. & Vogels, R. Inferotemporal neurons represent low-dimensional configurations of parameterized shapes. Nat. Neurosci. 4, 1244–1252 (2001).
    Article CAS Google Scholar
  40. Kobatake, E., Wang, G. & Tanaka, K. Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. J. Neurophysiol. 80, 324–330 (1998).
    Article CAS Google Scholar
  41. Mountcastle, V.B. The parietal system and some higher brain functions. Cereb. Cortex 5, 377–390 (1995).
    Article CAS Google Scholar
  42. Seung, H.S. & Sompolinsky, H. Simple models for reading neuronal population codes. Proc. Natl. Acad. Sci. USA 90, 10749–10753 (1993).
    Article CAS Google Scholar
  43. Zemel, R.S., Dayan, P. & Pouget, A. Probabilistic interpretation of population codes. Neural Comput. 10, 403–430 (1998).
    Article CAS Google Scholar
  44. Treue, S., Hol, K. & Rauber, H.J. Seeing multiple directions of motion-physiology and psychophysics. Nat. Neurosci. 3, 270–276 (2000).
    Article CAS Google Scholar
  45. Edelman, S. & Intrator, N. (Coarse coding of shape fragments) + (retinotopy) approximately = representation of structure. Spat. Vis. 13, 255–264 (2000).
    Article CAS Google Scholar
  46. Desimone, R., Albright, T.D., Gross, C.G. & Bruce, C. Stimulus-selective properties of inferior temporal neurons in the macaque. J. Neurosci. 4, 2051–2062 (1984).
    Article CAS Google Scholar
  47. Janssen, P., Vogels, R. & Orban, G.A. Macaque inferior temporal neurons are selective for disparity-defined three-dimensional shapes. Proc. Natl. Acad. Sci. USA 96, 8217–8222 (1999).
    Article CAS Google Scholar
  48. Robinson, D.A. A method of measuring eye movement using a scleral search coil in a magnetic field. IEEE Trans. Bio-Med. Electron. 10, 137–145 (1963).
    Article CAS Google Scholar
  49. Gattass, R., Sousa, A.P. & Gross, C.G. Visuotopic organization and extent of V3 and V4 of the macaque. J. Neurosci. 8, 1831–1845 (1988).
    Article CAS Google Scholar

Download references