Sequential alteration of peanut agglutinin binding-glycoprotein expression during progression of murine mammary neoplasia (original) (raw)

British Journal of Cancer volume 65, pages 641–648 (1992)Cite this article

Abstract

A sequential, quantitative loss of Peanut agglutinin (PNA) binding with progression of mouse mammary cells from normal to preneoplastic to neoplastic phenotypes was observed. Normal mammary epithelium, preneoplastic mammary lesions designated D2HAN (D2-type hyperplastic alveolar nodules) and a series of nine spontaneous tumours (D2ST1, D2ST2, D2ST3, D2ST4, D2A1, D2F2, D2.0R, D2.1, EMT6R08) derived from mice bearing D2HAN were grown in culture and analysed by flow cytometry with respect to PNA binding intensity to the cell surface. Primary cultures of normal mammary epithelium strongly bound PNA. A stepwise decrease in PNA binding by preneoplastic D2HAN cells and subsequent tumours arising from those hyperplastic lesions was observed. Three cloned tumour subpopulations derived from such tumours exhibited dramatic differences in PNA binding ranging from high (D2.0R) to low (D2.1) to very low (D2A1 cells). Their growth rate in vitro was similar. However, an inverse correlation between PNA binding and malignant characteristics, such as the incidence and latency of subcutaneous tumours and the efficiency of the tumour cells to form lung colonies after i.v. injection, existed. Cells subsequently derived from tumours resulting from injection of the D2.0R clone (high PNA binding, low tumorigenicity) were found to have diminished PNA binding properties and to be more tumorigenic when reimplanted into syngeneic mice. The difference in PNA binding (up to 50-fold) between normal mammary cells and other mouse mammary tumour cells, i.e., unrelated to D2HAN lesions, was also seen. These include six sister subpopulations derived from a single BALB/cfC3H mouse mammary tumour (lines: 67, 66c14, 168FARN, 4TO7, 68H, 64pT) as well as SP1 spontaneous CBA/J mouse mammary carcinoma. The difference was greatly reduced by neuraminidase treatment suggesting a masking of PNA binding sites by sialic acid. Separation of cell lysates by SDS-PAGE revealed a high molecular weight PNA binding glycoprotein (greater than 250 kd) expressed by normal mammary epithelium and preneoplastic D2HAN cells, but not by tumour cells regardless of neuraminidase treatment. A PNA reactive glycoprotein of approximately 90 kd was uniquely expressed in normal mammary epithelial lysates, although neuraminidase treatment exposed a similar band in a few tumour lines. Normal mammary epithelium, preneoplastic D2HAN cells, and the poorly tumorigenic clone D2.0R expressed a PNA binding glycoprotein of approximately 150 kd. This band appeared to be specifically sialylated during transition from the high PNA binding, low tumorigenic phenotype of D2.0R cells to the low PNA binding, highly tumorigenic phenotype of cells isolated from tumours resulting from s.c. implantation of D2.0R cells.(ABSTRACT TRUNCATED AT 400 WORDS)

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 24 print issues and online access

$259.00 per year

only $10.79 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

Author information

Authors and Affiliations

  1. Breast Cancer Biology Program, Michigan Cancer Foundation, Detroit, 48201
    JW Rak

Authors

  1. JW Rak
    You can also search for this author inPubMed Google Scholar
  2. D McEachern
    You can also search for this author inPubMed Google Scholar
  3. FR Miller
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Rak, J., McEachern, D. & Miller, F. Sequential alteration of peanut agglutinin binding-glycoprotein expression during progression of murine mammary neoplasia.Br J Cancer 65, 641–648 (1992). https://doi.org/10.1038/bjc.1992.138

Download citation