Couillard C, Mauriege P, Imbeault P, Prud’homme D, Nadeau A, Tremblay A et al. Hyperleptinemia is more closely associated with adipose cell hypertrophy than with adipose tissue hyperplasia. Int J Obes Relat Metab Disord 2000; 24: 782–788. ArticleCAS Google Scholar
Green H, Kehinde O . An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Cell 1975; 5: 19–27. ArticleCAS Google Scholar
MacDougald OA, Lane MD . Transcriptional regulation of gene expression during adipocyte differentiation. Annu Rev Biochem 1995; 64: 345–373. ArticleCAS Google Scholar
Tontonoz P, Hu E, Spiegelman BM . Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 1994; 79: 1147–1156. ArticleCAS Google Scholar
Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS et al. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 1999; 4: 611–617. ArticleCAS Google Scholar
Barak Y, Nelson MC, Ong ES, Jones YZ, Ruiz-Lozano P, Chien KR et al. PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell 1999; 4: 585–595. ArticleCAS Google Scholar
Freytag SO, Paielli DL, Gilbert JD . Ectopic expression of the CCAAT/enhancer-binding protein alpha promotes the adipogenic program in a variety of mouse fibroblastic cells. Genes Dev 1994; 8: 1654–1663. ArticleCAS Google Scholar
Rosen ED, Hsu CH, Wang X, Sakai S, Freeman MW, Gonzalez FJ et al. C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes Dev 2002; 16: 22–26. ArticleCAS Google Scholar
Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM . Transcriptional regulation of adipogenesis. Genes Dev 2000; 14: 1293–1307. CAS Google Scholar
Rosen ED, MacDougald OA . Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 2006; 7: 885–896. ArticleCAS Google Scholar
Cao Z, Umek RM, McKnight SL . Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev 1991; 5: 1538–1552. ArticleCAS Google Scholar
Rosen ED . The molecular control of adipogenesis, with special reference to lymphatic pathology. Ann N Y Acad Sci 2002; 979: 143–158; discussion 188–196. ArticleCAS Google Scholar
Bieker JJ . Kruppel-like factors: three fingers in many pies. J Biol Chem 2001; 276: 34355–34358. ArticleCAS Google Scholar
Banerjee SS, Feinberg MW, Watanabe M, Gray S, Haspel RL, Denkinger DJ et al. The Kruppel-like factor KLF2 inhibits peroxisome proliferator-activated receptor-gamma expression and adipogenesis. J Biol Chem 2003; 278: 2581–2584. Article Google Scholar
Sue N, Jack BH, Eaton SA, Pearson RC, Funnell AP, Turner J et al. Targeted disruption of the basic Kruppel-like factor gene (Klf3) reveals a role in adipogenesis. Mol Cell Biol 2008; 28: 3967–3978. ArticleCAS Google Scholar
Birsoy K, Chen Z, Friedman J . Transcriptional regulation of adipogenesis by KLF4. Cell Metab 2008; 7: 339–347. ArticleCAS Google Scholar
Oishi Y, Manabe I, Tobe K, Tsushima K, Shindo T, Fujiu K et al. Kruppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell Metab 2005; 1: 27–39. ArticleCAS Google Scholar
Li D, Yea S, Li S, Chen Z, Narla G, Banck M et al. Kruppel-like factor-6 promotes preadipocyte differentiation through histone deacetylase 3-dependent repression of DLK1. J Biol Chem 2005; 280: 26941–26952. ArticleCAS Google Scholar
Kanazawa A, Kawamura Y, Sekine A, Iida A, Tsunoda T, Kashiwagi A et al. Single nucleotide polymorphisms in the gene encoding Kruppel-like factor 7 are associated with type 2 diabetes. Diabetologia 2005; 48: 1315–1322. ArticleCAS Google Scholar
Mori T, Sakaue H, Iguchi H, Gomi H, Okada Y, Takashima Y et al. Role of Kruppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis. J Biol Chem 2005; 280: 12867–12875. ArticleCAS Google Scholar
Imataka H, Sogawa K, Yasumoto K, Kikuchi Y, Sasano K, Kobayashi A et al. Two regulatory proteins that bind to the basic transcription element (BTE), a GC box sequence in the promoter region of the rat P-4501A1 gene. EMBO J 1992; 11: 3663–3671. ArticleCAS Google Scholar
Simmen RC, Eason RR, McQuown JR, Linz AL, Kang TJ, Chatman Jr L et al. Subfertility, uterine hypoplasia, and partial progesterone resistance in mice lacking the Kruppel-like factor 9/basic transcription element-binding protein-1 (Bteb1) gene. J Biol Chem 2004; 279: 29286–29294. ArticleCAS Google Scholar
Simmen FA, Xiao R, Velarde MC, Nicholson RD, Bowman MT, Fujii-Kuriyama Y et al. Dysregulation of intestinal crypt cell proliferation and villus cell migration in mice lacking Kruppel-like factor 9. Am J Physiol Gastrointest Liver Physiol 2007; 292: G1757–G1769. ArticleCAS Google Scholar
Denver RJ, Ouellet L, Furling D, Kobayashi A, Fujii-Kuriyama Y, Puymirat J . Basic transcription element-binding protein (BTEB) is a thyroid hormone-regulated gene in the developing central nervous system. Evidence for a role in neurite outgrowth. J Biol Chem 1999; 274: 23128–23134. ArticleCAS Google Scholar
Velarde MC, Zeng Z, McQuown JR, Simmen FA, Simmen RC . Kruppel-like factor 9 is a negative regulator of ligand-dependent estrogen receptor alpha signaling in Ishikawa endometrial adenocarcinoma cells. Mol Endocrinol 2007; 21: 2988–3001. ArticleCAS Google Scholar
Xue JC, Schwarz EJ, Chawla A, Lazar MA . Distinct stages in adipogenesis revealed by retinoid inhibition of differentiation after induction of PPARgamma. Mol Cell Biol 1996; 16: 1567–1575. ArticleCAS Google Scholar
Clarke SL, Robinson CE, Gimble JM . CAAT/enhancer binding proteins directly modulate transcription from the peroxisome proliferator-activated receptor gamma 2 promoter. Biochem Biophys Res Commun 1997; 240: 99–103. ArticleCAS Google Scholar
Benayoun BA, Veitia RA . A post-translational modification code for transcription factors: sorting through a sea of signals. Trends Cell Biol 2009; 19: 189–197. ArticleCAS Google Scholar
Slavin DA, Koritschoner NP, Prieto CC, Lopez-Diaz FJ, Chatton B, Bocco JL . A new role for the Kruppel-like transcription factor KLF6 as an inhibitor of c-Jun proto-oncoprotein function. Oncogene 2004; 23: 8196–8205. ArticleCAS Google Scholar
Zhang Z, Teng CT . Phosphorylation of Kruppel-like factor 5 (KLF5/IKLF) at the CBP interaction region enhances its transactivation function. Nucleic Acids Res 2003; 31: 2196–2208. ArticleCAS Google Scholar
Ellenrieder V, Zhang JS, Kaczynski J, Urrutia R . Signaling disrupts mSin3A binding to the Mad1-like Sin3-interacting domain of TIEG2, an Sp1-like repressor. EMBO J 2002; 21: 2451–2460. ArticleCAS Google Scholar
Eaton SA, Funnell AP, Sue N, Nicholas H, Pearson RC, Crossley M . A network of Kruppel-like Factors (Klfs). Klf8 is repressed by Klf3 and activated by Klf1 in vivo. J Biol Chem 2008; 283: 26937–26947. ArticleCAS Google Scholar
Sogawa K, Kikuchi Y, Imataka H, Fujii-Kuriyama Y . Comparison of DNA-binding properties between BTEB and Sp1. J Biochem 1993; 114: 605–609. ArticleCAS Google Scholar
Kaczynski JA, Conley AA, Fernandez Zapico M, Delgado SM, Zhang JS, Urrutia R . Functional analysis of basic transcription element (BTE)-binding protein (BTEB) 3 and BTEB4, a novel Sp1-like protein, reveals a subfamily of transcriptional repressors for the BTE site of the cytochrome P4501A1 gene promoter. Biochem J 2002; 366: 873–882. ArticleCAS Google Scholar
Dang DT, Zhao W, Mahatan CS, Geiman DE, Yang VW . Opposing effects of Kruppel-like factor 4 (gut-enriched Kruppel-like factor) and Kruppel-like factor 5 (intestinal-enriched Kruppel-like factor) on the promoter of the Kruppel-like factor 4 gene. Nucleic Acids Res 2002; 30: 2736–2741. ArticleCAS Google Scholar
Zhang W, Shields JM, Sogawa K, Fujii-Kuriyama Y, Yang VW . The gut-enriched Kruppel-like factor suppresses the activity of the CYP1A1 promoter in an Sp1-dependent fashion. J Biol Chem 1998; 273: 17917–17925. ArticleCAS Google Scholar
Tong Q, Dalgin G, Xu H, Ting CN, Leiden JM, Hotamisligil GS . Function of GATA transcription factors in preadipocyte–adipocyte transition. Science 2000; 290: 134–138. ArticleCAS Google Scholar
Merika M, Thanos D . Enhanceosomes. Curr Opin Genet Dev 2001; 11: 205–208. ArticleCAS Google Scholar
Carey M . The enhanceosome and transcriptional synergy. Cell 1998; 92: 5–8. ArticleCAS Google Scholar
Farmer SR . Transcriptional control of adipocyte formation. Cell Metab 2006; 4: 263–273. ArticleCAS Google Scholar
Jin S, Zhai B, Qiu Z, Wu J, Lane MD, Liao K . c-Crk, a substrate of the insulin-like growth factor-1 receptor tyrosine kinase, functions as an early signal mediator in the adipocyte differentiation process. J Biol Chem 2000; 275: 34344–34352. ArticleCAS Google Scholar
Hong S, Huo H, Xu J, Liao K . Insulin-like growth factor-1 receptor signaling in 3T3-L1 adipocyte differentiation requires lipid rafts but not caveolae. Cell Death Differ 2004; 11: 714–723. ArticleCAS Google Scholar