Activated macrophages utilize glycolytic ATP to maintain mitochondrial membrane potential and prevent apoptotic cell death (original) (raw)
Garedew A, Moncada S . Mitochondrial dysfunction and HIF1_α_ stabilization in inflammation. J Cell Sci 2008; 121: 3468–3475. ArticleCAS Google Scholar
Beltran B, Mathur A, Duchen MR, Erusalimsky JD, Moncada S . The effect of nitric oxide on cell respiration: a key to understanding its role in cell survival or death. Proc Natl Acad Sci USA 2000; 97: 14602–14607. ArticleCAS Google Scholar
Beltran B, Quintero M, Garcia-Zaragoza E, O’Connor E, Esplugues JV, Moncada S . Inhibition of mitochondrial respiration by endogenous nitric oxide: a critical step in Fas signaling. Proc Natl Acad Sci USA 2002; 99: 8892–8897. ArticleCAS Google Scholar
Almeida A, Almeida J, Bolanos JP, Moncada S . Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection. Proc Natl Acad Sci USA 2001; 98: 15294–15299. ArticleCAS Google Scholar
Scorrano L, Ashiya M, Buttle K, Weiler S, Oakes SA, Mannella CA et al. A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev Cell 2002; 2: 55–67. ArticleCAS Google Scholar
Gottlieb E, Armour SM, Harris MH, Thompson CB . Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ 2003; 10: 709–717. ArticleCAS Google Scholar
Zamzami N, Marchetti P, Castedo M, Zanin C, Vayssiere JL, Petit PX et al. Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med 1995; 181: 1661–1672. ArticleCAS Google Scholar
Marchetti P, Castedo M, Susin SA, Zamzami N, Hirsch T, Macho A et al. Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med 1996; 184: 1155–1160. ArticleCAS Google Scholar
Spierings D, McStay G, Saleh M, Bender C, Chipuk J, Maurer U et al. Connected to death: the (unexpurgated) mitochondrial pathway of apoptosis. Science 2005; 310: 66–67. ArticleCAS Google Scholar
Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J 1998; 17: 1675–1687. ArticleCAS Google Scholar
Kroemer G, Galluzzi L, Brenner C . Mitochondrial membrane permeabilization in cell death. Physiol Rev 2007; 87: 99–163. ArticleCAS Google Scholar
Chipuk JE, Green DR . Do inducers of apoptosis trigger caspase-independent cell death? Nat Rev Mol Cell Biol 2005; 6: 268–275. ArticleCAS Google Scholar
Khaled AR, Reynolds DA, Young HA, Thompson CB, Muegge K, Durum SK . Interleukin-3 withdrawal induces an early increase in mitochondrial membrane potential unrelated to the Bcl-2 family. Roles of intracellular pH, ADP transport, and F(0)F(1)-ATPase. J Biol Chem 2001; 276: 6453–6462. ArticleCAS Google Scholar
Banki K, Hutter E, Gonchoroff NJ, Perl A . Elevation of mitochondrial transmembrane potential and reactive oxygen intermediate levels are early events and occur independently from activation of caspases in Fas signaling. J Immunol 1999; 162: 1466–1479. CASPubMedPubMed Central Google Scholar
Gao Q, Wolin MS . Effects of hypoxia on relationships between cytosolic and mitochondrial NAD(P)H redox and superoxide generation in coronary arterial smooth muscle. Am J Physiol Heart Circ Physiol 2008; 295: H978–H989. ArticleCAS Google Scholar
Nagy G, Koncz A, Fernandez D, Perl A . Nitric oxide, mitochondrial hyperpolarization, and T cell activation. Free Radic. Biol Med 2007; 42: 1625–1631. CAS Google Scholar
Perl A, Gergely Jr P, Nagy G, Koncz A, Banki K . Mitochondrial hyperpolarization: a checkpoint of T-cell life, death and autoimmunity. Trends Immunol 2004; 25: 360–367. ArticleCAS Google Scholar
Scarlett JL, Sheard PW, Hughes G, Ledgerwood EC, Ku HH, Murphy MP . Changes in mitochondrial membrane potential during staurosporine-induced apoptosis in Jurkat cells. FEBS Lett 2000; 475: 267–272. ArticleCAS Google Scholar
Kinnally KW, Antonsson B . A tale of two mitochondrial channels, MAC and PTP, in apoptosis. Apoptosis 2007; 12: 857–868. ArticleCAS Google Scholar
Gottlieb E, Vander Heiden MG, Thompson CB . Bcl-xL prevents the initial decrease in mitochondrial membrane potential and subsequent reactive oxygen species production during tumor necrosis factor alpha-induced apoptosis. Mol Cell Biol 2000; 20: 5680–5689. ArticleCAS Google Scholar
Petit PX, Lecoeur H, Zorn E, Dauguet C, Mignotte B, Gougeon ML . Alterations in mitochondrial structure and function are early events of dexamethasone-induced thymocyte apoptosis. J Cell Biol 1995; 130: 157–167. ArticleCAS Google Scholar
Sionov RV, Cohen O, Kfir S, Zilberman Y, Yefenof E . Role of mitochondrial glucocorticoid receptor in glucocorticoid-induced apoptosis. J Exp Med 2006; 203: 189–201. ArticleCAS Google Scholar
Zamzami N, Marchetti P, Castedo M, Decaudin D, Macho A, Hirsch T et al. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 1995; 182: 367–377. ArticleCAS Google Scholar
Fernandez D, Perl A . Metabolic control of T cell activation and death in SLE. Autoimmun Rev 2009; 8: 184–189. ArticleCAS Google Scholar
Kinosita K, Adachi K, Itoh H . Rotation of F1-ATPase: how an ATP-driven molecular machine may work. Annu Rev Biophys Biomol Struct 2004; 33: 245–268. ArticleCAS Google Scholar
Klingenberg M . The ADP and ATP transport in mitochondria and its carrier. Biochim Biophys Acta 2008; 1778: 1978–2021. ArticleCAS Google Scholar
Krayl M, Lim JH, Martin F, Guiard B, Voos W . A cooperative action of the ATP-dependent import motor complex and the inner membrane potential drives mitochondrial preprotein import. Mol Cell Biol 2007; 27: 411–425. ArticleCAS Google Scholar
Martin J, Mahlke K, Pfanner N . Role of an energized inner membrane in mitochondrial protein import. ΔΨ drives the movement of presequences. J Biol Chem 1991; 266: 18051–18057. CASPubMed Google Scholar
Koya RC, Fujita H, Shimizu S, Ohtsu M, Takimoto M, Tsujimoto Y et al. Gelsolin inhibits apoptosis by blocking mitochondrial membrane potential loss and cytochrome c release. J Biol Chem 2000; 275: 15343–15349. ArticleCAS Google Scholar
Khaled AR, Kim K, Hofmeister R, Muegge K, Durum SK . Withdrawal of IL-7 induces Bax translocation from cytosol to mitochondria through a rise in intracellular pH. Proc Natl Acad Sci USA 1999; 96: 14476–14481. ArticleCAS Google Scholar
Cartron PF, Oliver L, Mayat E, Meflah K, Vallette FM . Impact of pH on Bax_α_ conformation, oligomerisation and mitochondrial integration. FEBS Lett 2004; 578: 41–46. ArticleCAS Google Scholar
Tafani M, Cohn JA, Karpinich NO, Rothman RJ, Russo MA, Farber JL . Regulation of intracellular pH mediates Bax activation in HeLa cells treated with staurosporine or tumor necrosis factor-α. J Biol Chem 2002; 277: 49569–49576. ArticleCAS Google Scholar
Belaud-Rotureau MA, Leducq N, Macouillard Poulletier de GF, Diolez P, Lacoste L, Lacombe F et al. Early transitory rise in intracellular pH leads to Bax conformation change during ceramide-induced apoptosis. Apoptosis 2000; 5: 551–560. ArticleCAS Google Scholar
Antonsson B, Conti F, Ciavatta A, Montessuit S, Lewis S, Martinou I et al. Inhibition of Bax channel-forming activity by Bcl-2. Science 1997; 277: 370–372. ArticleCAS Google Scholar
Cartron PF, Bellot G, Oliver L, Grandier-Vazeille X, Manon S, Vallette FM . Bax inserts into the mitochondrial outer membrane by different mechanisms. FEBS Lett 2008; 582: 3045–3051. ArticleCAS Google Scholar
Talanian RV, Quinlan C, Trautz S, Hackett MC, Mankovich JA, Banach D et al. Substrate specificities of caspase family proteases. J Biol Chem 1997; 272: 9677–9682. ArticleCAS Google Scholar