Regulation of the sympathetic nervous system by nitric oxide and oxidative stress in the rostral ventrolateral medulla: 2012 Academic Conference Award from the Japanese Society of Hypertension (original) (raw)
Grassi G . Assessment of sympathetic cardiovascular drive in human hypertension: achievements and perspectives. Hypertension 2009; 54: 690–697. CASPubMed Google Scholar
Grassi G . Sympathetic neural activity in human hypertension and related diseases. Am J Hypertens 2010; 23: 1052–1060. PubMed Google Scholar
Grassi G, Seravalle G, Quarti-Trevano F . The ‘neurogenic hypothesis’ in hypertension: current evidence. Exp Physiol 2010; 95: 581–586. PubMed Google Scholar
Esler M . The 2009 Carl Ludwig lecture: pathophysiology of the human sympathetic nervous system in cardiovascular diseases: the transition from mechanisms to medical management. J Appl Physiol 2010; 108: 227–237. CASPubMed Google Scholar
Mauo K, Lambert GW, Esler MD, Rakugi H, Ogihara T, Schlaich MP . The role of sympathetic nervous system activity in renal injury and end-stage renal disease. Hypertens Res 2010; 33: 521–528. Google Scholar
Dampney RAL . Functional organization of central pathways regulating the cardiovascular system. Physiol Rev 1994; 74: 323–364. CASPubMed Google Scholar
Guyenet PG . The sympathetic control of blood pressure. Nat Rev Neurosci 2006; 7: 335–346. CASPubMed Google Scholar
Pilowsky PM, Goodchild AK . Baroreceptor reflex pathways and neurotransmitters: 10 years on. J Hypertens 2002; 20: 1675–1688. CASPubMed Google Scholar
Sved AF, Ito S, Sved JC . Brainstem mechanisms of hypertension: role of the rostral ventrolateral medulla. Curr Hypertens Rep 2003; 5: 262–268. PubMed Google Scholar
Dampney RAL, Polson JW, Potts PD, Hirooka Y, Horiuchi J . Functional organization of brain pathways subserving the baroreceptor reflex: studies in conscious animals using immediate early gene expression. Cell Mol Neurobiol 2003; 23: 597–616. CASPubMed Google Scholar
Campos RR, Bergamschi CT . Neurotransmission alterations in central cardiovascular control in experimental hypertension. Curr Hypertens Rev 2006; 2: 193–198. Google Scholar
Carlson SH, Wyss JM . Neurohormonal regulation of the sympathetic nervous system: new insights into central mechanisms of action. Curr Hypertens Rep 2008; 10: 233–240. CASPubMedPubMed Central Google Scholar
Dampney RAL, Horiuchi J, Killinger S, Sheriff MJ, Tan PSP, McDowall LM . Long-term regulation of arterial blood pressure by hypothalamic nuclei: some critical questions. Clin Exp Pharmacol Physiol 2005; 32: 419–425. CASPubMed Google Scholar
Coote JH . Landmarks in understanding the central nervous control of the cardiovascular system. Exp Physiol 2007; 92: 3–18. PubMed Google Scholar
Krukoff TL . Central action of nitric oxide in regulation of autonomic functions. Brain Res Rev 1999; 30: 52–65. CASPubMed Google Scholar
Patel K, Li YF, Hirooka Y . Role of nitric oxide in central sympathetic outflow. Exp Biol Med 2001; 226: 814–824. CAS Google Scholar
Zanzinger J . Role of nitric oxide in the neural control of cardiovascular function. Cardiovasc Res 1999; 43: 639–649. CASPubMed Google Scholar
Tai MH, Wang LL, Wu KLH, Chan JYH . Increased superoxide anion in rostral ventrolateral medulla contributes to hypertension in spontaneously hypertensive rats via interactions with nitric oxide. Free Rad Biol Med 2005; 38: 450–462. CASPubMed Google Scholar
Peterson JR, Sharma RV, Davisson RL . Reactive oxygen species in the neuropathogenesis of hypertension. Curr Hypertens Rep 2006; 8: 232–241. CASPubMed Google Scholar
Hirooka Y . Role of reactive oxygen species in brainstem in neural mechanisms of hypertension. Auton Neurosci 2008; 142: 20–24. CASPubMed Google Scholar
Campos RR . Oxidative stress in the brain and arterial hypertension. Hypertens Res 2009; 32: 1047–1048. PubMed Google Scholar
Hirooka Y, Sagara Y, Kishi T, Sunagawa K . Oxidative stress and central cardiovascular regulation: pathogenesis of hypertension and therapeutic aspects. Circ J 2010; 274: 827–835. Google Scholar
Hirooka Y . Oxidative stress in the cardiovascular center has a pivotal role in the sympathetic activation in hypertension. Hypertens Res 2011; 34: 407–412. CASPubMed Google Scholar
Hirooka Y, Kishi T, Sakai K, Takeshita A, Sunagawa K . Imbalance of central nitric oxide and reactive oxygen species in the regulation of sympathetic activity and neural mechanisms of hypertension. Am J Physiol 2011; 300: R818–R826. CAS Google Scholar
Garthwaite J . Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci 2008; 27: 2783–2802. PubMedPubMed Central Google Scholar
Talman WT, Dragon DN . Transmission of arterial baroreflex signals depends on neuronal nitric oxide synthase. Hypertension 2004; 43: 820–824. CASPubMed Google Scholar
Talman WT . NO and central cardiovascular control: a simple molecule with a complex story. Hypertension 2006; 48: 552–554. CASPubMed Google Scholar
TFC Batten, Atkinson L, Deuchars J . Nitric oxide systems in the medulla oblongata and their involvement in autonomic control. Functional neuroanatomy of the nitric oxide system,. in. Handbook of Chemical Neuroanatomy, eds Steinbusch HWM, De Vente J, Vincent SR, Elsevier: Amsterdam, The Netherlands. 2000) pp 177–213. Google Scholar
Hirooka Y, Kishi T, Sakai K, Shimokawa H, Takeshita A . Effects of overproduction of nitric oxide in the brain stem on the cardiovascular response in conscious rats. J Cardiovasc Pharmacol 2003; 41 (Suppl 1): S119–S126. CASPubMed Google Scholar
Hirooka Y, Shigematsu H, Kishi T, Kimura Y, Ueta Y, Takeshita A . Reduced nitric oxide synthase in the brainstem contributes to enhanced sympathetic drive in rats with heart failure. J Cardiovasc Pharmacol 2003; 42 (Suppl 1): S111–S115. CASPubMed Google Scholar
Sakai K, Hirooka Y, Matsuo I, Eshima K, Shigematsu H, Shimokawa H, Takeshita A . Overexpression of eNOS in NTS causes hypotension and bradycardia in vivo. Hypertension 2000; 36: 1023–1028. CASPubMed Google Scholar
Hirooka Y, Polson JW, Dampney RAL . Pressor and sympathoexcitatory effects of nitric oxide in the rostral ventrolateral medulla. J Hypertens 1996; 14: 1317–1324. CASPubMed Google Scholar
Zanzinger J, Seller H . Species differences in the distribution of nitric oxide synthase in brain stem regions that regulate sympathetic activity. Brain Res 1997; 764: 265–268. CASPubMed Google Scholar
Chen SY, Mao SP, Chai CY . Role of nitric oxide on pressor mechanisms within the dorsomedial and rostral ventrolateral medulla in anesthetized cats. Clin Exp Pharmacol Physiol 2001; 28: 155–163. CASPubMed Google Scholar
Morimoto S, Sasaki S, Miki S, Kawa T, Nakamura K, Itoh H, Nakata T, Takeda K, Nakagawa M, Fushiki S . Nitric oxide is an excitatory modulator in the rostral ventrolateral medulla in rats. Am J Hypertens 2000; 13: 1125–1134. CASPubMed Google Scholar
Tseng CJ, Liu HY, Lin HC, Ger LP, Tung CS, Yen MH . Cardiovascular effects of nitric oxide in the brain stem nuclei of rats. Hypertension 1996; 27: 36–42. CASPubMed Google Scholar
Huang CC, Chan SH, Hsu KS . cGMP/protein kinase G-dependent potentiation of glutamatergic transmission induced by nitric oxide in immature rat rostral ventrolateral medulla neurons in vitro. Mol Pharmacol 2003; 64: 521–532. CASPubMed Google Scholar
Kishi T, Hirooka Y, Sakai K, Shigematsu H, Shimokawa H, Takeshita A . Overexpression of eNOS in the RVLM causes hypotension and bradycardia via GABA release. Hypertension 2001; 38: 896–901. ArticleCASPubMed Google Scholar
Kishi T, Hirooka Y, Ito K, Sakai K, Shimokawa H, Takeshita A . Cardiovascular effects of overexpression of endothelial nitric oxide synthase in the rostral ventrolateral medulla in stroke-prone spontaneously hypertensive rats. Hypertension 2002; 39: 264–268. CASPubMed Google Scholar
Kishi T, HIrooka Y, Kimura Y, Sakai K, Ito K, Shimokawa H, Takeshita A . Overexpression of eNOS in RVLM improves impaired baroreflex control of heart rate in SHRSP. Hypertension 2003; 41: 255–260. ArticleCASPubMed Google Scholar
Smith JK, Barron KW . GABAergic responses in ventrolateral medulla in spontaneously hypertensive rats. Am J Physiol 1990; 258: R450–R456. CASPubMed Google Scholar
Chang AY, Chan JY, Chan SH . Differential distribution of nitric oxide synthase isoforms in the rostral ventrolateral medulla of the rat. J Biomed Sci 2003; 10: 285–291. CASPubMed Google Scholar
Guo ZL, Tjen-A-Looi SC, Fu LW, Longhurst JC . Nitric oxide in rostral ventrolateral medulla regulates cardiac-sympathetic reflexes: role of synthase isoforms. Am J Physiol 2009; 297: H1478–H1486. CAS Google Scholar
Martins-Pinge MC, Garcia MR, Zoccal DB, Crestani CC, Pinge-Filho P . Differential influences of iNOS and nNOS inhibitors on rostral ventrolateral medullary mediated cardiovascular control in conscious rats. Auton Neursci 2007; 131: 65–69. CAS Google Scholar
Chan SH, Wang LL, Chan JY . Differential cardiovascular responses to blockade of nNOS or iNOS in rostral ventrolateral medulla of the rats. Br J Pharmacol 2001; 133: 606–614. CASPubMedPubMed Central Google Scholar
Ibrahim BM, Abdel-Rahman AA . Enhancement of rostral ventrolateral medulla neuronal nitric-oxide synthase-nitric-oxide signaling mediates the central cannabinoid receptor 1-evoked pressor response in conscious rats. J Pharmacol Exp Ther 2012; 341: 579–586. CASPubMedPubMed Central Google Scholar
Chan SH, Wang LL, Chan JY . Differential engagement of glutamate and GABA receptors in cardiovascular actions of endogenous nNOS or iNOS at rostral ventrolateral medulla of rats. Br J Pharmacol 2003; 138: 584–593. CASPubMedPubMed Central Google Scholar
Wang Y, Patel KP, Cornish KG, Channon KM, Zucker IH . nNOS gene transfer to RVLM improves baroreflex function in rats with chronic heart failure. Am J Physiol 2003; 285: H1660–H1667. CAS Google Scholar
Kimura Y, Hirooka Y, Sagara Y, Ito K, Kishi T, Shimokawa H, Takeshita A, Sunagawa K . Overexpression of inducible nitric oxide synthase in rostral ventrolateral medulla causes hypertension and sympathoexcitation via an increase in oxidative stress. Circ Res 2005; 96: 252–260. CASPubMed Google Scholar
Kimura Y, Hirooka Y, Kishi T, Ito K, Sagara Y, Sunagawa K . Role of inducible nitric oxide synthase in rostral ventrolateral medulla in blood pressure regulation in spontaneously hypertensive rats. Clin Exp Hypertens 2009; 31: 281–286. CASPubMed Google Scholar
Chan JY, Wang LL, Wu KL, Chan SH . Reduced functional expression and molecular synthesis of inducible nitric oxide synthase in rostral ventrolateral medulla of spontaneously hypertensive rats. Circulation 2001; 104: 1676–1681. CASPubMed Google Scholar
Guo ZL, Longhurst J . Responses of neurons containing VGLUT3/nNOS-cGMP in the rVLM to cardiac stimulation. Neuroreport 2006; 17: 255–259. PubMed Google Scholar
Kishi T, Hirooka Y, Kimura Y, Ito K, Shimokawa H, Takeshita A . Increased reactive oxygen species in rostral ventrolateral medulla contributes to neural mechanisms of hypertension in stroke-prone spontaneously hypertensive rats. Circulation 2004; 109: 2357–2362. CASPubMed Google Scholar
Kishi T, Hirooka Y, Shimokawa H, Takeshita A, Sunagawa K . Atorvastatin reduced oxidative stress in the rostral ventrolateral medulla of stroke-prone spontaneously hypertensive rats. Clin Exp Hypertens 2008; 30: 3–11. CASPubMed Google Scholar
Kishi T, Hirooka Y, Konno S, Sunagawa K . Sympathoinhibition induced by centrally administered atorvastatin is associated with alteration of NAD(P)H oxidase and Mn superoxide dismutase activity in rostral ventrolateral medulla of stroke-prone spontaneously hypertensive rats. J Cardiovasc Pharmacol 2010b; 55: 184–190. CASPubMed Google Scholar
Kishi T, Sunagawa K . Experimental ‘jet lag’ causes sympathoexcitation via oxidative stress through AT1 receptor in the brainstem. Conf Proc IEEE Eng Med Biol Soc 2011; 2011: 1969–1972. CAS Google Scholar
Kishi T, Hirooka Y, Ogawa K, Konno S, Sunagawa K . Calorie restriction inhibits sympathetic nerve activity via anti-oxidant effect in the rostral ventrolateral medulla of obesity-induced hypertensive rats. Clin Exp Hypertens 2011; 33: 240–245. CASPubMed Google Scholar
Kishi T, Hirooka Y, Sunagawa K . Sympathoinhibition caused by orally administered telmisartan through inhibition of AT(1) receptor in the rostral ventrolateral medulla. Hypertens Res 2012; 35: 940–946. CASPubMed Google Scholar
Kishi T, Hirooka Y, Katsuki M, Ogawa K, Shinohara K, Isegawa K, Sunagawa K . Exercise training causes sympathoinhibition through antioxidant effect in the rostral ventrolateral medulla of hypertensive rats. Clin Exp Hypertens 2012; 34: 278–283. PubMed Google Scholar
Kishi T, Sunagawa K . Combination therapy of atorvastatin and amlodipine inhibits sympathetic nervous system activation and improves cognitive function in hypertensive rats. Circ J 2012; 76: 1934–1941. CASPubMed Google Scholar
Konno S, Hirooka Y, Araki S, Koga Y, Kishi T, Sunagawa K . Azelnidipine decreases sympathetic nerve activity via antioxidant effect in the rostral ventrolateral medulla of stroke-prone spontaneously hypertensive rats. J Cardiovasc Pharmacol 2008; 52: 555–560. CASPubMed Google Scholar
Koga Y, Hirooka Y, Araki S, Nozoe M, Kishi T, Sunagawa K . High salt intake enhances blood pressure increase during development of hypertension via oxidative stress in rostral ventrolateral medulla of spontaneously hypertensive rats. Hypertens Res 2008; 31: 2075–2083. CASPubMed Google Scholar
Nishihara M, Hirooka Y, Matsukawa R, Kishi T, Sunagawa K . Oxidative stress in the rostral ventrolateral medulla modulates excitatory and inhibitory inputs in spontaneously hypertensive rats. J Hypertens 2012; 30: 97–106. CASPubMed Google Scholar
Konno S, Hirooka Y, Kishi T, Sunagawa K . Sympatho-inhibitory effect of telmisartan through the reduction of oxidative stress in rostral ventrolateral medulla of obesity-induced hypertensive rat. J Hypertens 2012; 30: 1992–1999. CASPubMed Google Scholar
Fujita M, Ando K, Nagae A, Fujita T . Sympathoexcitation by oxidative stress in the brain mediates arterial pressure elevation in salt-sensitive hypertension. Hypertension 2007; 50: 360–367. CASPubMed Google Scholar
Nagae A, Fujita M, Kawarazaki H, Matsui H, Ando K, Fujita T . Sympathoexcitation by oxidative stress in the brain mediates arterial pressure elevation in obesity-induced hypertension. Circulation 2009; 119: 978–986. CASPubMed Google Scholar
Oliveira-Sales EB, Nishi EE, Carillo BA, Dolnikoff MS, Bergamaschi CT, Campos RR . Oxidative stress in the sympathetic premotor neurons contributes to sympathetic activation in renovascular hypertension. Am J Hypertens 2009; 22: 484–492. CASPubMed Google Scholar
Oliveira-Sales EB, Colombari DSA, Davisson RL, Kasparov S, Hirata AE, Campos RR, Paton JFR . Kidney-induced hypertension depends on superoxide signaling in the rostral ventrolateral medulla. Hypertension 2010; 56: 290–296. CASPubMed Google Scholar
Nozoe M, Hirooka Y, Koga Y, Araki S, Konno S, Kishi T, Ide T, Sunagawa K . Mitochondria-derived reactive oxygen species mediate sympathoexcitation induced by angiotensin II in the rostral ventrolateral medulla. J Hypertens 2008; 26: 2176–2184. CASPubMed Google Scholar
Kishi T, Hirooka Y, Konno S, Ogawa K, Sunagawa K . Angiotensin II type 1 receptor activated caspase-3 through ras/mitogen-activated protein kinase/extracellular signal regulated kinase in the rostral ventrolateral medulla is involved in sympathoexcitation in stroke-prone spontaneously hypertensive rats. Hypertension 2010; 55: 291–297. CASPubMed Google Scholar
Chan SH, Hsu KS, Huang CC, Wang LL, Qu CC, Chan JY . NADPH oxidase-derived superoxide anion mediates angiotensin II-induced pressor effect via activation of p38 mitogen-activated protein kinase in the rostral ventrolateral medulla. Circ Res 2005; 97: 772–780. CASPubMed Google Scholar
Hu L, Zhu DN, Yu Z, Wang JQ, Sun ZJ, Yao T . Expression of angiotensin type 1 (AT1) receptor in the rostral ventrolateral medulla in rats. J Appl Physiol 2002; 92: 2153–2161. CASPubMed Google Scholar
Reja V, Goodchild AK, Phillips JK, Pilowsky PM . Upregulation of angiotensin AT1 receptor and intracellular kinase gene expression in hypertensive rats. Clin Exp Pharmacol Physiol 2006; 33: 690–695. CASPubMed Google Scholar
Leenen FHH . Brain mechanisms contributing to sympathetic hyperactivity and heart failure. Circ Res 2007; 101: 221–223. CASPubMed Google Scholar
Huang BS, Leenen FHH . The brain renin-angiotensin-aldosterone system: a major mechanism for sympathetic hyperactivity and left ventricular remodeling and dysfunction after myocardial infarction. Curr Heart Fail Rep 2009; 6: 81–88. CASPubMed Google Scholar
Zucker IH, Schultz HD, Patel KP, Wang W, Gao L . Regulation of central angiotensin type 1 receptors and sympathetic outflow in heart failure. Am J Physiol 2009; 297: H1557–H1566. CAS Google Scholar
Dupont AG, Brouwers S . Brain angiotensin peptides regulate sympathetic tone and blood pressure. J Hypertens 2010; 28: 1599–1610. CASPubMed Google Scholar
Nozoe M, Hirooka Y, Koga Y, Sagara Y, Kishi T, Engelhardt JF, Sunagawa K . Inhibition of Rac1-derived reactive oxygen species in nucleus tractus solitarius decreases blood pressure and heart arte in stroke-prone spontaneously hypertensive rats. Hypertension 2007; 50: 62–68. CASPubMed Google Scholar
Zimmerman MC, Zucker IH . Mitochondrial dysfunction and mitochondria-produced reactive oxygen species: new aspects for neurogenic hypertension? Hypertension 2009; 53: 112–114. CASPubMed Google Scholar
Hirooka Y, Potts PD, Dampney RAL . Role of angiotensin II receptor subtypes in mediating the sympathoexcitatory effects of exogenous and endogenous angiotensin peptides in the rostral ventrolateral medulla. Brain Res 1997; 772: 107–114. CASPubMed Google Scholar
Dampney RAL, Tan PSP, Sheriff MJ, Fontes MAP, Horiuchi J . Cardiovascular effects of angiotensin II in the rostral ventrolateral medulla: the push-pull hypothesis. Curr Hypertens Rep 2007; 9: 222–227. CASPubMed Google Scholar
Shinohara K, Hirooka Y, Kishi T, Sunagawa K . Reduction of nitric oxide-mediated γ-amino butyric acid release in rostral ventrolateral medulla is involved in superoxide-induced sympathoexcitation of hypertensive rats. Circ J 2012; 76: 2814–2821. CASPubMed Google Scholar
Zielonka J, Zielonka M, Sikora A, Adamus J, Joseph J, Hardy M, Ouari O, Dranka BP, Kalyanaraman B . Global profiling of reactive oxygen and nitrogen species in biological systems: high-throughput real-time analysis. J Biol Chem 2012; 287: 2984–2995. CASPubMed Google Scholar
Zanzinger J . Mechanisms of action of nitric oxide in the brain stem: role of oxidative stress. Auton Neurosci 2002; 98: 24–27. CASPubMed Google Scholar
Sun J, Druhan LJ, Zweler JL . Reactive oxygen and nitrogen species regulate inducible nitric oxide synthase function shifting the balance of nitric oxide and superoxide production. Arch Biochem Biophys 2010; 494: 130–137. CASPubMed Google Scholar
Kung LC, Chan SH, Wu KL, Ou CC, Tai MH, Chan JY . Mitochondrial respiratory enzyme complexes in rostral ventrolateral medulla as cellular targets of nitric oxide and superoxide interaction in the antagonism of antihypertensive action of eNOS transgene. Mol Pharmacol 2008; 74: 1319–1332. CASPubMed Google Scholar
Rhee SG . Cell signaling, H2O2, a necessary evil for cell signaling. Science 2006; 312: 1882–1883. PubMed Google Scholar
Yu Y, Zhang ZH, Wei SG, Serrats J, Weiss RM, Felder RB . Brain perivascular macrophages and the sympathetic response to inflammation in rats after myocardial infarction. Hypertension 2010; 55: 652–659. CASPubMed Google Scholar
Hirooka Y . Brain perivascular macrophages and central sympathetic activation after myocardial infarction: heart and brain interaction. Hypertension 2010; 55: 610–611. CASPubMed Google Scholar
Cardinale JP, Sriramula S, Mariappan N, Agarwal D, Francis J . Angiotensin II-induced hypertension is modulated by nuclear factor-kB in the paraventricular nucleus. Hypertension 2011; 59: 113–121. PubMed Google Scholar
Shi P, Diez-Freire C, Jun JY, Qi Y, Katovich MJ, Li Q, Sriramula S, Francis J, Summers C, Raizada MK . Brain microglial cytokines in neurogenic hypertension. Hypertension 2010; 56: 297–303. CASPubMed Google Scholar
Kishi T, Hirooka Y, Sunagawa K . Autoimplantation of astrocytes into cardiovascular center of brainstem causes sympathoinhibition and decreases the mortality rate in hypertensive rats. Circulation 2010; 122: A13856. Google Scholar
Kishi T, Hirooka Y, Sunagawa K . Autoimplantation of astrocytes into the cardiovascular center of brainstem causes sympathoinhibition and decreases the mortality rate in myocardial infarction-induced heart failure. Circulation 2011; 124: A11489. Google Scholar
Kumagai H, Oshima N, Matsuura T, Iigaya K, Imai M, Onimaru H, Sakata K, Osaka M, Onami T, Takimoto C, Kamayachi T, Itoh H, Saruta T . Importance of rostral ventrolateral medulla neurons in determining efferent sympathetic nerve activity and blood pressure. Hypertens Res 2012; 35: 132–141. CASPubMed Google Scholar
Matsuura T, Kumagai H, Kawai A, Onimaru H, Imai M, Oshima N, Sakata K, Saruta T . Rostral ventrolateral medulla neurons of neonatal Wister-Kyoto and spontaneously hypertensive rats. Hypertension 2002; 40: 560–565. CASPubMed Google Scholar
Oshima N, Kumagai H, Onimaru H, Kawai A, Pilowski PM, Iigaya K, Takimoto C, Hayashi K, Saruta T, Itoh H . Monosynaptic excitatory connection from the rostral ventrolateral medulla to sympathetic pregangionic neurons revealed by simultaneous recording. Hypertens Res 2008; 31: 1445–1454. PubMed Google Scholar
Wu KL, Chan SH, Chan JY . Neuroinflammation and oxidative stress in rostral ventrolateral medulla contribute to neurogenic hypertension induced by systemic inflammation. J Neuroinflammation 2012; 9: 212. CASPubMedPubMed Central Google Scholar
Gao L, Li Y, Schultz HD, Wang WZ, Finch M, Smith LM, Zucker IH . Downregulated Kv4.3 expression in the RVLM as a potential mechanism for sympathoexcitation in rats with chronic heart failure. Am J Physiol 2010; 298: H945–H955. CAS Google Scholar
Allen AM, MacGregor DP, McKinley MJ, Mendelsohn FAO . Angiotensin II receptors in the human brain. Regul Pept 1999; 79: 1–7. CASPubMed Google Scholar
McKinley MJ, Albiston AL, Allen AM, Mathai ML, May CN, McAllen RM, Oldfield BJ, Mendelsohn FAO, Chai SY . The brain renin-angiotensin system: location and physiological roles. Int J Biochem Cell Biol 2003; 35: 901–918. CASPubMed Google Scholar
Wang JM, Tan J, Leenen FHH . Central nervous system blockade by peripheral administration of AT1 receptor blockers. J Cardiovasc Pharmacol 2003; 41: 593–599. CASPubMed Google Scholar
Tsuchihashi T, Kagiyama S, Matsumura K, Abe I, Fujishima M . Effects of chronic oral treatment with imidapril and TCV-116 on the responsiveness to angiotensin II in ventrolateral medulla of SHR. J Hypertens 1999; 17: 917–922. CASPubMed Google Scholar
Nishimura Y, Ito T, Hoe KL, Saavedra JM . Chronic peripheral administration of the angiotensin II AT1 receptor antagonist candesartan blocks brain AT1 receptors. Brain Res 2000; 871: 29–38. CASPubMed Google Scholar
Gohlke P, Weiss S, Jansen A, Wienen W, Stangier J, Rascher W, Culman J, Unger T . AT1 receptor antagonist telmisartan administered peripherally inhibits central responses to angiotensin II in conscious rats. J Pharmacol Exp Ther 2001; 298: 62–70. CASPubMed Google Scholar
Leenen FHH, Yuan B . Prevention of hypertension by irbesartan in Dahl S rats relates to central angiotensin II type 1 receptor blockade. Hypertension 2001; 37: 981–984. CASPubMed Google Scholar
Lin Y, Matsumura K, Kagiyama S, Fukuhara M, Fujii K, Iida M . Chronic administration of olmesartan attenuates the exaggerated pressor response to glutamate in the rostral ventrolateral medulla of SHR. Brain Res 2005; 1058: 161–166. CASPubMed Google Scholar
Araki S, Hirooka Y, Kishi T, Yasukawa K, Utsumi H, Sunagawa K . Olmesartan reduces stress in the brain of stroke-prone spontaneously hypertensive rats assessed by an in vivo ESR method. Hypertens Res 2009; 32: 1091–1096. CASPubMed Google Scholar
Golomb BA, Dimsdale JE, White HL, Ritchie JB, Criqui MH . Reduction in blood pressure with statins: results from the USCD Statin Study, a randomized trial. Arch Intern Med 2008; 168: 721–727. CASPubMedPubMed Central Google Scholar
Sinski M, Lewandowsk J, Ciarka A, Bidiuk J, Abramczyk P, Dobosiewicz A, Gaciong Z . Atorvastatin reduced sympathetic activity and increases baroreceptor reflex sensitivity in patients with hypercholesterolemia and systemic arterial hypertension. Kardiol Pol 2009; 67: 613–620. PubMed Google Scholar
Kishi T, Hirooka Y . Sympathoinhibitory effects of atorvastatin in hypertension. Circ J 2010; 74: 2552–2553. PubMed Google Scholar
Siddiqi L, Joles JA, Oey PL, Blankestijn PJ . Atorvastatin reduced sympathetic activity in patients with chronic kidney disease. J Hypertens 2011; 29: 2176–2180. CASPubMed Google Scholar
Wassmann S, Laufs U, Muller K, Konkol C, Ahlbory K, Baumer AT, Linz W, Bohm M, Nickenig G . Cellular antioxidant effects of atorvastatin in vitro and in vivo. Arterioscler Thromb Vasc Biol 2002; 22: 300–305. CASPubMed Google Scholar
Kishi T, Hirooka Y, Mukai Y, Shimokawa H, Takeshita A . Atorvastatin causes depressor and sympathoinhibitory effects with upregulation of nitric oxide synthase in stroke-prone spontaneously hypertensive rats. J Hypertens 2003; 21: 379–386. CASPubMed Google Scholar
Hirooka Y, Kimura Y, Nozoe M, Sagara Y, Ito K, Sunagawa K . Amlodipine-induced reduction of oxidative stress in the brain is associated with sympatho-inhibitory effects in stroke-prone spontaneously hypertensive rats. Hypertens Res 2006; 29: 49–56. CASPubMed Google Scholar
Shinohara K, Hirooka Y, Ogawa K, Kishi T, Yasukawa K, Utsumi H, Sunagawa K . Combination therapy of olmesartan and azelnidipine inhibits sympathetic activity associated with reducing oxidative stress in the brain of hypertensive rats. Clin Exp Hypertens 2012; 34: 456–464. CASPubMed Google Scholar
Iwanami J, Mogi M, Iwai M, Horiuchi M . Inhibition of the renin-angiotensin system and target organ protection. Hypertens Res 2009; 32: 229–237. CASPubMed Google Scholar
Mogi M, Horiuchi M . Effects of angiotensin II receptor blockers on dementia. Hypertens Res 2009; 32: 738–740. CASPubMed Google Scholar
Krum H, Schlaich MP, Whitbourn R, Sobotka P, Sadowski J, Bartus K, Kapelak B, Walton A, Sievert H, Thambar S, Abraham WT, Esler M . Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of principle cohort study. Lancet 2009; 373: 1275–1281. PubMed Google Scholar
DiBona GF, Esler M . Translational medicine: the antihypertensive effect of renal denervation. Am J Physiol 2010; 298: R245–R253. CAS Google Scholar
Simplicity HTN-2 Investigators. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Simplicity HTN-2 Trail): a randomized controlled trial. Lancet 2010; 376: 1903–1909. Google Scholar
Calaresu FR, Ciriello J . Renal afferent nerves affect discharge rate of medullary and hypothalamic single units in cat. J Auton Nerv Syst 1981; 3: 311–320. CASPubMed Google Scholar
Stella A, Golin R, Genovesi S, Zanchetti A . Renal reflexes in the regulation of blood pressure and sodium excretion. Can J Physiol Pharmacol 1987; 65: 1536–1539. CASPubMed Google Scholar
Ye S, Zhong H, Campese VM . Oxidative stress mediates the sympathetic nerve activity in the phenol renal injury model of hypertension. Hypertension 2006; 48: 309–315. CASPubMed Google Scholar
Campese VM, Shaohua Y, Huiquin Z . Oxidative stress mediates angiotensin II-dependent stimulation of sympathetic nerve activity. Hypertension 2005; 46: 533–539. CASPubMed Google Scholar