Identification of a novel mutation confirms the implication of IFT172 (BBS20) in Bardet–Biedl syndrome (original) (raw)

References

  1. Beales, P. L., Elcioglu, N., Woolf, A. S., Parker, D. & Flinter, F. A. New criteria for improved diagnosis of Bardet–Biedl syndrome: results of a population survey. J. Med. Genet. 36, 437–446 (1999).
    CAS PubMed PubMed Central Google Scholar
  2. Zhang, Q., Yu, D., Seo, S., Stone, E. M. & Sheffield, V. C. Intrinsic protein–protein interaction-mediated and chaperonin-assisted sequential assembly of stable Bardet–Biedl syndrome protein complex, the BBSome. J. Biol. Chem. 24, 20625–20635 (2012).
    Article Google Scholar
  3. Aldahmesh, M. A., Li, Y., Alhashem, A., Anazi, S., Alkuraya, H., Hashem, M. et al. IFT27, encoding a small GTPase component of IFT particles, is mutated in a consanguineous family with Bardet–Biedl syndrome. Hum. Mol. Genet. 23, 3307–3315 (2014).
    Article CAS PubMed PubMed Central Google Scholar
  4. Bujakowska, K. M., Zhang, Q., Siemiatkowska, A. M., Liu, Q., Place, E., Falk, M. J. et al. Mutations in IFT172 cause isolated retinal degeneration and Bardet–Biedl syndrome. Hum. Mol. Genet. 24, 230–242 (2015).
    Article CAS PubMed Google Scholar
  5. Halbritter, J., Bizet, A. A., Schmidts, M., Porath, J. D., Braun, D. A., Gee, H. Y. et al. Defects in the IFT-B component IFT172 cause Jeune and Mainzer-Saldino syndromes in humans. Am. J. Hum. Genet. 93, 915–925 (2013).
    Article CAS PubMed PubMed Central Google Scholar
  6. Geoffroy, V., Pizot, C., Redin, C., Piton, A., Vasli, N. & Stoetzel, C. et al. VaRank: a simple and powerful tool for ranking genetic variants. PeerJ 3, e796 (2015).
    Article PubMed PubMed Central Google Scholar
  7. Scheidecker, S., Etard, C., Pierce, N. W., Geoffroy, V., Schaefer, E., Muller, J. et al. Exome sequencing of Bardet–Biedl syndrome patient identifies a null mutation in the BBSome subunit BBIP1 (BBS18). J. Med. Genet. 51, 132–136 (2014).
    Article PubMed Google Scholar
  8. Yeo, G. & Burge, C. B. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J. Comput. Biol. 11, 377–394 (2004).
    Article CAS PubMed Google Scholar
  9. Reese, M. G., Eeckman, F. H., Kulp, D. & Haussler, D. Improved splice site detection in Genie. J. Comput. Biol. 4, 311–323 (1997).
    Article CAS PubMed Google Scholar
  10. Shapiro, M. B. & Senapathy, P. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 15, 7155–7174 (1987).
    Article CAS PubMed PubMed Central Google Scholar
  11. Huber, C. & Cormier-Daire, V. Ciliary disorder of the skeleton. Am. J. Med. Genet. C 15, 165–174 (2012).
    Article Google Scholar
  12. Friedland-Little, J. M., Hoffmann, A. D., Ocbina, P. J. R., Peterson, M. A., Bosman, J. D., Chen, Y. et al. A novel murine allele of intraflagellar transport protein 172 causes a syndrome including VACTERL-like features with hydrocephalus. Hum. Mol. Genet 20, 3725–3737 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  13. Manouvrier-Hanu, S., Moerman, A. & Lefevre, J. Bardet–Biedl syndrome with preaxial polydactyly. Am. J. Med. Genet. 84, 75 (1999).
    Article CAS PubMed Google Scholar
  14. Zeniou, M., Gattoni, R., Hanauer, A. & Stévenin, J. Delineation of the mechanisms of aberrant splicing caused by two unusual intronic mutations in the RSK2 gene involved in Coffin–Lowry syndrome. Nucleic Acids Res. 32, 1214–1223 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  15. Taschner, M., Bhogaraju, S. & Lorentzen, E. Architecture and function of IFT complex proteins in ciliogenesis. Differentiation 83, S12–S22 (2012).
    Article CAS PubMed Google Scholar
  16. Tsao, C. C. & Gorovsky, M. A. Different effects of Tetrahymena IFT172 domains on anterograde and retrograde intraflagellar transport. Mol. Biol. Cell. 19, 1450–1461 (2008).
    Article CAS PubMed PubMed Central Google Scholar

Download references