- Massberg S, Schaerli P, Knezevic-Maramica I, Köllnberger M, Tubo N, Moseman EA et al. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 2007; 131: 994–1008.
Article CAS Google Scholar
- Welner RS, Kincade PW . Stem cells on patrol. Cell 2007; 131: 842–844.
Article CAS Google Scholar
- Kassirer M, Zeltser D, Gluzman B, Leibovitz E, Goldberg Y, Roth A et al. The appearance of L-selectin(low) polymorphonuclear leukocytes in the circulating pool of peripheral blood during myocardial infarction correlates with neutrophilia and with the size of the infarct. Clin Cardiol 1999; 22: 721–726.
Article CAS Google Scholar
- Kyne L, Hausdorff JM, Knight E, Dukas L, Azhar G, Wei JY . Neutrophilia and congestive heart failure after acute myocardial infarction. Am Heart J 2000; 139: 94–100.
Article CAS Google Scholar
- Matsunaga T, Sakamaki S, Kohgo Y, Ohi S, Hirayama Y, Niitsu Y . Recombinant human granulocyte colony-stimulating factor can mobilize sufficient amounts of peripheral blood stem cells in healthy volunteers for allogeneic transplantation. Bone Marrow Transplant 1993; 11: 103–108.
CAS PubMed Google Scholar
- Sato N, Sawada K, Takahashi TA, Mogi Y, Asano S, Koike T et al. A time course study for optimal harvest of peripheral blood progenitor cells by granulocyte colony-stimulating factor in healthy volunteers. Exp Hematol 1994; 22: 973–978.
CAS PubMed Google Scholar
- Papayannopoulou T, Nakamoto B, Andrews RG, Lyman SD, Lee MY . In vivo effects of Flt3/Flk2 ligand on mobilization of hematopoietic progenitors in primates and potent synergistic enhancement with granulocyte colony-stimulating factor. Blood 1997; 90: 620–629.
CAS PubMed Google Scholar
- Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 2002; 3: 687–694.
Article CAS Google Scholar
- Lévesque JP, Takamatsu Y, Nilsson SK, Haylock DN, Simmons PJ . Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 2001; 98: 1289–1297.
Article Google Scholar
- Ratajczak MZ, Reca R, Wysoczynski M, Kucia M, Baran JT, Allendorf DJ et al. Transplantation studies in C3-deficient animals reveal a novel role of the third complement component (C3) in engraftment of bone marrow cells. Leukemia 2004; 18: 1482–1490.
Article CAS Google Scholar
- Ratajczak MZ, Reca R, Wysoczynski M, Yan J, Ratajczak J . Modulation of the SDF-1-CXCR4 axis by the third complement component (C3)--implications for trafficking of CXCR4+ stem cells. Exp Hematol 2006; 34: 986–995.
Article CAS Google Scholar
- Reca R, Cramer D, Yan J, Laughlin MJ, Janowska-Wieczorek A, Ratajczak J et al. A novel role of complement in mobilization: immunodeficient mice are poor granulocyte-colony stimulating factor mobilizers because they lack complement-activating immunoglobulins. Stem Cells 2007; 25: 3093–3100.
Article CAS Google Scholar
- Pruijt JF, Verzaal P, van Os R, de Kruijf EJ, van Schie ML, Mantovani A et al. Neutrophils are indispensable for hematopoietic stem cell mobilization induced by interleukin-8 in mice. Proc Natl Acad Sci USA 2002; 99: 6228–6233.
Article CAS Google Scholar
- Wu W, Lee H, Wysoczynski M, Kucia M, Ratajczak J, Ratajczak MZ . Novel observation that mice lacking the fifth complement cascade protein component (C5) are very poor stem cell mobilizers explained by defective egress of granulocytes: a novel role for bone marrow granulocytes to act as ‘ice breaker’ cells in facilitating egress of hematopoietic stem/progenitor cells. Blood 2008; 112: 32. Abstract 67.
Google Scholar
- Nagai Y, Garrett KP, Ohta S, Bahrun U, Kouro T, Akira S et al. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 2006; 24: 801–812.
Article CAS Google Scholar
- Reca R, Mastellos D, Majka M, Marquez L, Ratajczak J, Franchini S et al. Functional receptor for C3a anaphylatoxin is expressed by normal hematopoietic stem/progenitor cells, and C3a enhances their homing-related responses to SDF-1. Blood 2003; 101: 3784–3793.
Article CAS Google Scholar
- Ratajczak J, Reca R, Kucia M, Majka M, Allendorf DJ, Baran JT et al. Mobilization studies in mice deficient in either C3 or C3a receptor (C3aR) reveal a novel role for complement in retention of hematopoietic stem/progenitor cells in bone marrow. Blood 2004; 103: 2071–2078.
Article CAS Google Scholar
- Wysoczynski M, Reca R, Lee H, Wu W, Ratajczak J, Ratajczak MZ . Defective engraftment of C3aR(−/−) hematopoietic stem progenitor cells shows a novel role of the C3a-C3aR axis in bone marrow homing. [Leukemia 2009; e-pub ahead of print 9 Apr 2009; doi:10.1038/leu.2009.73].
Article CAS Google Scholar
- Molendijk WJ, van Oudenaren A, van Dijk H, Daha MR, Benner R . Complement split product C5a mediates the lipopolysaccharide-induced mobilization of CFU-s and haemopoietic progenitor cells, but not the mobilization induced by proteolytic enzymes. Cell Tissue Kinet 1986; 19: 407–417.
CAS PubMed Google Scholar
- Lévesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ . Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest 2003; 111: 187–196.
Article Google Scholar
- Lévesque JP, Hendy J, Winkler IG, Takamatsu Y, Simmons PJ . Granulocyte colony-stimulating factor induces the release in the bone marrow of proteases that cleave c-KIT receptor (CD117) from the surface of hematopoietic progenitor cells. Exp Hematol 2003; 31: 109–117.
Article Google Scholar
- Pruijt JF, Fibbe WE, Laterveer L, Pieters RA, Lindley IJ, Paemen L et al. Prevention of interleukin-8-induced mobilization of hematopoietic progenitor cells in rhesus monkeys by inhibitory antibodies against the metalloproteinase gelatinase B (MMP-9). Proc Natl Acad Sci USA 1999; 96: 10863–10868.
Article CAS Google Scholar
- King AG, Horowitz D, Dillon SB, Levin R, Farese AM, MacVittie TJ et al. Rapid mobilization of murine hematopoietic stem cells with enhanced engraftment properties and evaluation of hematopoietic progenitor cell mobilization in rhesus monkeys by a single injection of SB-251353, a specific truncated form of the human CXC chemokine GRObeta. Blood 2001; 97: 1534–1542.
Article CAS Google Scholar
- Velders GA, van Os R, Hagoort H, Verzaal P, Guiot HF, Lindley IJ et al. Reduced stem cell mobilization in mice receiving antibiotic modulation of the intestinal flora: involvement of endotoxins as cofactors in mobilization. Blood 2004; 103: 340–346.
Article CAS Google Scholar
- Sato M, Sano H, Iwaki D, Kudo K, Konishi M, Takahashi H et al. Direct binding of Toll-like receptor 2 to zymosan, and zymosan-induced NF-kappa B activation and TNF-alpha secretion are down-regulated by lung collectin surfactant protein A. J Immunol 2003; 171: 417–425.
Article CAS Google Scholar
- Beutler BA . TLRs and innate immunity. Blood 2009; 113: 1399–1407.
Article CAS Google Scholar
- Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J et al. A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 2006; 20: 857–869.
Article CAS Google Scholar
- Mousli M, Hugli TE, Landry Y, Bronner C . A mechanism of action for anaphylatoxin C3a stimulation of mast cells. J Immunol 1992; 148: 2456–2461.
CAS PubMed Google Scholar
- Sitrin RG, Emery SL, Sassanella TM, Blackwood RA, Petty HR . Selective localization of recognition complexes for leukotriene B4 and formyl-Met-Leu-Phe within lipid raft microdomains of human polymorphonuclear neutrophils. J Immunol 2006; 177: 8177–8184.
Article CAS Google Scholar
- Glaspy JA, Shpall EJ, LeMaistre CF, Briddell RA, Menchaca DM, Turner SA et al. Peripheral blood progenitor cell mobilization using stem cell factor in combination with filgrastim in breast cancer patients. Blood 1997; 90: 2939–2951.
CAS PubMed Google Scholar
- Chabannon C, Le Corroller AG, Viret F, Eillen C, Faucher C, Moatti JP et al. Cost-effectiveness of repeated aphereses in poor mobilizers undergoing high-dose chemotherapy and autologous hematopoietic cell transplantation. Leukemia 2003; 17: 811–813.
Article CAS Google Scholar
- Liles WC, Broxmeyer HE, Rodger E, Wood B, Hübel K, Cooper S et al. Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 2003; 102: 2728–2730.
Article CAS Google Scholar
- Sweeney EA, Lortat-Jacob H, Priestley GV, Nakamoto B, Papayannopoulou T . Sulfated polysaccharides increase plasma levels of SDF-1 in monkeys and mice: involvement in mobilization of stem/progenitor cells. Blood 2002; 99: 44–51.
Article CAS Google Scholar
- Cramer DE, Wagner S, Li B, Liu J, Hansen R, Reca R et al. Mobilization of hematopoietic progenitor cells by yeast-derived beta-glucan requires activation of matrix metalloproteinase-9. Stem Cells 2008; 26: 1231–1240.
Article CAS Google Scholar
- Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 2006; 124: 407–421.
Article CAS Google Scholar
- McQuibban GA, Butler GS, Gong JH, Bendall L, Power C, Clark-Lewis I et al. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem 2001; 276: 43503–43508.
Article CAS Google Scholar
- Semerad CL, Christopher MJ, Liu F, Short B, Simmons PJ, Winkler I et al. G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 2005; 106: 3020–3027.
Article CAS Google Scholar
- Kollet O, Dar A, Lapidot T . The multiple roles of osteoclasts in host defense: bone remodeling and hematopoietic stem cell mobilization. Annu Rev Immunol 2007; 25: 51–69.
Article CAS Google Scholar
- Winkler IG, Levesque JP . Mechanisms of hematopoietic stem cell mobilization: when innate immunity assails the cells that make blood and bone. Exp Hematol 2006; 34: 996–1009.
Article CAS Google Scholar
- van Pel M, van Os R, Velders GA, Hagoort H, Heegaard PM, Lindley IJ et al. Serpina1 is a potent inhibitor of IL-8-induced hematopoietic stem cell mobilization. Proc Natl Acad Sci USA 2006; 103: 1469–1474.
Article CAS Google Scholar
- Liu F, Poursine-Laurent J, Link DC . Expression of the G-CSF receptor on hematopoietic progenitor cells is not required for their mobilization by G-CSF. Blood 2000; 95: 3025–3031.
CAS PubMed Google Scholar
- Zhang M, Austen Jr WG, Chiu I, Alicot EM, Hung R, Ma M et al. Identification of a specific self-reactive IgM antibody that initiates intestinal ischemia/reperfusion injury. Proc Natl Acad Sci USA 2004; 101: 3886–3891.
Article CAS Google Scholar
- Cramer DE, Allendorf DJ, Baran JT, Hansen R, Marroquin J, Li B et al. Beta-glucan enhances complement-mediated hematopoietic recovery after bone marrow injury. Blood 2006; 107: 835–840.
Article CAS Google Scholar
- Huber-Lang M, Sarma JV, Zetoune FS, Rittirsch D, Neff TA, McGuire SR et al. Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med 2006; 12: 682–687.
Article CAS Google Scholar
- Ganz T . Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 2003; 3: 710–720.
Article CAS Google Scholar
- Soehnlein O, Zernecke A, Eriksson EE, Rothfuchs AG, Pham CT, Herwald H et al. Neutrophil secretion products pave the way for inflammatory monocytes. Blood 2008; 112: 1461–1471.
Article CAS Google Scholar
- Fukuoka Y, Hugli TE . Anaphylatoxin binding and degradation by rat peritoneal mast cells. Mechanisms of degranulation and control. J Immunol 1990; 145: 1851–1858.
CAS PubMed Google Scholar
- Volanakis JE . Overview of the complement system. In: Volanakis JE, Frank M (eds). The Human Complement System in Health and Disease. Marcel Dekker: New York, NY, 1998, 9–32.
Chapter Google Scholar
- Vakeva AP, Agah A, Rollins SA, Matis LA, Li L, Stahl GL . Myocardial infarction and apoptosis after myocardial ischemia and reperfusion: role of the terminal complement components and inhibition by anti-C5 therapy. Circulation 1998; 97: 2259–2267.
Article CAS Google Scholar
- Pedersen ED, Waje-Andreassen U, Vedeler CA, Aamodt G, Mollnes TE . Systemic complement activation following human acute ischaemic stroke. Clin Exp Immunol 2004; 137: 117–122.
Article CAS Google Scholar