The targeting of immunosuppressive mechanisms in hematological malignancies (original) (raw)

References

  1. Heine A, Held SA, Bringmann A, Holderried TA, Brossart P . Immunomodulatory effects of anti-angiogenic drugs. Leukemia 2011; 25: 899–905.
    CAS Google Scholar
  2. Clarkson B, Strife A, Wisniewski D, Lambek CL, Liu C . Chronic myelogenous leukemia as a paradigm of early cancer and possible curative strategies. Leukemia 2003; 17: 1211–1262.
    CAS Google Scholar
  3. Hus I, Schmitt M, Tabarkiewicz J, Radej S, Wojas K, Bojarska-Junak A et al. Vaccination of B-CLL patients with autologous dendritic cells can change the frequency of leukemia antigen-specific CD8+ T cells as well as CD4+CD25+FoxP3+ regulatory T cells toward an antileukemia response. Leukemia 2008; 22: 1007–1017.
    CAS Google Scholar
  4. Giannopoulos K, Dmoszynska A, Kowal M, Rolinski J, Gostick E, Price DA et al. Peptide vaccination elicits leukemia-associated antigen-specific cytotoxic CD8+ T-cell responses in patients with chronic lymphocytic leukemia. Leukemia 2010; 24: 798–805.
    CAS Google Scholar
  5. Fabricius D, Breckerbohm L, Vollmer A, Queudeville M, Eckhoff SM, Fulda S et al. Acute lymphoblastic leukemia cells treated with CpG oligodeoxynucleotides, IL-4 and CD40 ligand facilitate enhanced anti-leukemic CTL responses. Leukemia 2011; 25: 1111–1121.
    CAS Google Scholar
  6. Brentjens RJ, Riviere I, Park JH, Davila ML, Wang X, Stefanski J et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 2011; 118: 4817–4828.
    Article CAS Google Scholar
  7. Herreros B, Sanchez-Aguilera A, Piris MA . Lymphoma microenvironment: culprit or innocent? Leukemia 2008; 22: 49–58.
    CAS Google Scholar
  8. Fife BT, Bluestone JA . Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev 2008; 224: 166–182.
    CAS Google Scholar
  9. Egen JG, Kuhns MS, Allison JP . CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol 2002; 3: 611–618.
    CAS Google Scholar
  10. Perez-Garcia A, Brunet S, Berlanga JJ, Tormo M, Nomdedeu J, Guardia R et al. CTLA-4 genotype and relapse incidence in patients with acute myeloid leukemia in first complete remission after induction chemotherapy. Leukemia 2009; 23: 486–491.
    CAS Google Scholar
  11. Zhong RK, Loken M, Lane TA, Ball ED . CTLA-4 blockade by a human MAb enhances the capacity of AML-derived DC to induce T-cell responses against AML cells in an autologous culture system. Cytotherapy 2006; 8: 3–12.
    CAS Google Scholar
  12. Bashey A, Medina B, Corringham S, Pasek M, Carrier E, Vrooman L et al. CTLA4 blockade with ipilimumab to treat relapse of malignancy after allogeneic hematopoietic cell transplantation. Blood 2009; 113: 1581–1588.
    CAS Google Scholar
  13. Fevery S, Billiau AD, Sprangers B, Rutgeerts O, Lenaerts C, Goebels J et al. CTLA-4 blockade in murine bone marrow chimeras induces a host-derived antileukemic effect without graft-versus-host disease. Leukemia 2007; 21: 1451–1459.
    CAS Google Scholar
  14. Dong H, Zhu G, Tamada K, Chen L . B7-H1 a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 1999; 5: 1365–1369.
    CAS Google Scholar
  15. Kozako T, Yoshimitsu M, Fujiwara H, Masamoto I, Horai S, White Y et al. PD-1/PD-L1 expression in human T-cell leukemia virus type 1 carriers and adult T-cell leukemia/lymphoma patients. Leukemia 2009; 23: 375–382.
    CAS Google Scholar
  16. Atanackovic D, Luetkens T, Kröger N . Coinhibitory molecule PD-1 as a potential target for the immunotherapy of multiple myeloma. Leukemia 2013; e-pub ahead of print 23 October 2013 doi:10.1038/leu.2013.310.
    Google Scholar
  17. Yang H, Bueso-Ramos C, DiNardo C, Estecio MR, Davanlou M, Geng Q-R et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia 2013; e-pub ahead of print 25 November 2013 doi:10.1038/leu.2013.355.
    Google Scholar
  18. Krejsgaard T, Odum N, Geisler C, Wasik MA, Woetmann A . Regulatory T cells and immunodeficiency in mycosis fungoides and Sezary syndrome. Leukemia 2012; 26: 424–432.
    CAS Google Scholar
  19. Kollgaard T, Petersen SL, Hadrup SR, Masmas TN, Seremet T, Andersen MH et al. Evidence for involvement of clonally expanded CD8+ T cells in anticancer immune responses in CLL patients following nonmyeloablative conditioning and hematopoietic cell transplantation. Leukemia 2005; 19: 2273–2280.
    CAS Google Scholar
  20. Ame-Thomas P, Le PJ, Yssel H, Caron G, Pangault C, Jean R et al. Characterization of intratumoral follicular helper T cells in follicular lymphoma: role in the survival of malignant B cells. Leukemia 2012; 26: 1053–1063.
    CAS Google Scholar
  21. van deDonk NW, Kamps S, Mutis T, Lokhorst HM . Monoclonal antibody-based therapy as a new treatment strategy in multiple myeloma. Leukemia 2012; 26: 199–213.
    CAS Google Scholar
  22. Tamura H, Ishibashi M, Yamashita T, Tanosaki S, Okuyama N, Kondo A et al. Marrow stromal cells induce B7-H1 expression on myeloma cells, generating aggressive characteristics in multiple myeloma. Leukemia 2013; 27: 464–472.
    CAS Google Scholar
  23. Greaves P, Gribben JG . The role of B7 family molecules in hematologic malignancy. Blood 2013; 121: 734–744.
    CAS Google Scholar
  24. Thompson RH, Gillett MD, Cheville JC, Lohse CM, Dong H, Webster WS et al. Costimulatory B7-H1 in renal cell carcinoma patients: Indicator of tumor aggressiveness and potential therapeutic target. Proc Natl Acad Sci USA 2004; 101: 17174–17179.
    Article CAS Google Scholar
  25. Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci USA 2007; 104: 3360–3365.
    CAS Google Scholar
  26. Nomi T, Sho M, Akahori T, Hamada K, Kubo A, Kanehiro H et al. Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res 2007; 13: 2151–2157.
    CAS Google Scholar
  27. Chen BJ, Chapuy B, Ouyang J, Sun HH, Roemer MG, Xu ML et al. PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin Cancer Res 2013; 19: 3462–3473.
    CAS Google Scholar
  28. Christiansson L, Soderlund S, Svensson E, Mustjoki S, Bengtsson M, Simonsson B et al. Increased level of myeloid-derived suppressor cells, programmed death receptor ligand 1/programmed death receptor 1, and soluble CD25 in Sokal high risk chronic myeloid leukemia. PLoS One 2013; 8: e55818.
    CAS Google Scholar
  29. Hatta Y, Koeffler HP . Role of tumor suppressor genes in the development of adult T cell leukemia/lymphoma (ATLL). Leukemia 2002; 16: 1069–1085.
    CAS Google Scholar
  30. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012; 366: 2455–2465.
    CAS Google Scholar
  31. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012; 366: 2443–2453.
    CAS Google Scholar
  32. Berger R, Rotem-Yehudar R, Slama G, Landes S, Kneller A, Leiba M et al. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res 2008; 14: 3044–3051.
    CAS Google Scholar
  33. Munir S, Andersen GH, Met O, Donia M, Frosig TM, Larsen SK et al. HLA-restricted cytotoxic T cells that are specific for the immune checkpoint ligand PD-L1 occur with high frequency in cancer patients. Cancer Res 2013; 73: 1674–1776.
    Google Scholar
  34. Munir S, Andersen GH, Woetmann A, Odum N, Becker JC, Andersen MH . Cutaneous T cell lymphoma cells are targets for immune checkpoint ligand PD-L1-specific, cytotoxic T cells. Leukemia 2013; 27: 2251–2253.
    CAS Google Scholar
  35. Mous R, Savage P, Remmerswaal EB, van Lier RA, Eldering E, van Oers MH . Redirection of CMV-specific CTL towards B-CLL via CD20-targeted HLA/CMV complexes. Leukemia 2006; 20: 1096–1102.
    CAS Google Scholar
  36. Peric Z, Cahu X, Chevallier P, Brissot E, Malard F, Guillaume T et al. Features of Epstein-Barr Virus (EBV) reactivation after reduced intensity conditioning allogeneic hematopoietic stem cell transplantation. Leukemia 2011; 25: 932–938.
    CAS Google Scholar
  37. Ahmad SM, Larsen SK, Svane IM, Andersen MH . Harnessing PD-L1-specific cytotoxic T cells for anti-leukemia immunotherapy to defeat mechanisms of immune escape mediated by the PD-1 pathway. Leukemia 2014; 28: 236–238.
    CAS Google Scholar
  38. Pardoll DM . The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12: 252–264.
    CAS Google Scholar
  39. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 2008; 322: 271–275.
    CAS Google Scholar
  40. Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 2006; 203: 1701–1711.
    CAS Google Scholar
  41. Seddiki N, Santner-Nanan B, Martinson J, Zaunders J, Sasson S, Landay A et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med 2006; 203: 1693–1700.
    CAS Google Scholar
  42. Sakaguchi S . Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 2004; 22: 531–562.
    Article CAS Google Scholar
  43. Roncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings MK . Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev 2006; 212: 28–50.
    CAS Google Scholar
  44. Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 2003; 198: 1875–1886.
    CAS Google Scholar
  45. Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 2007; 450: 566–569.
    CAS Google Scholar
  46. Chen KJ, Lin SZ, Zhou L, Xie HY, Zhou WH, Taki-Eldin A et al. Selective recruitment of regulatory T cell through CCR6-CCL20 in hepatocellular carcinoma fosters tumor progression and predicts poor prognosis. PLoS One 2011; 6: e24671.
    CAS Google Scholar
  47. Szczepanski MJ, Szajnik M, Czystowska M, Mandapathil M, Strauss L, Welsh A et al. Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia. Clin Cancer Res 2009; 15: 3325–3332.
    CAS Google Scholar
  48. Beyer M, Kochanek M, Darabi K, Popov A, Jensen M, Endl E et al. Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood 2005; 106: 2018–2025.
    CAS Google Scholar
  49. Munir S, Larsen SK, Iversen TZ, Donia M, Klausen TW, Svane IM et al. Natural CD4(+) T-cell responses against indoleamine 2,3-dioxygenase. PLoS One 2012; 7: e34568.
    CAS Google Scholar
  50. Le DT, Jaffee EM . Regulatory T-cell modulation using cyclophosphamide in vaccine approaches: a current perspective. Cancer Res 2012; 72: 3439–3444.
    CAS Google Scholar
  51. Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F et al. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 2007; 56: 641–648.
    CAS Google Scholar
  52. Giannopoulos K, Schmitt M, Wlasiuk P, Chen J, Bojarska-Junak A, Kowal M et al. The high frequency of T regulatory cells in patients with B-cell chronic lymphocytic leukemia is diminished through treatment with thalidomide. Leukemia 2008; 22: 222–224.
    CAS Google Scholar
  53. Giannopoulos K, Dmoszynska A, Kowal M, Wasik-Szczepanek E, Bojarska-Junak A, Rolinski J et al. Thalidomide exerts distinct molecular antileukemic effects and combined thalidomide/fludarabine therapy is clinically effective in high-risk chronic lymphocytic leukemia. Leukemia 2009; 23: 1771–1778.
    CAS Google Scholar
  54. Teng MW, Swann JB, von SB, Sharkey J, Zerafa N, McLaughlin N et al. Multiple antitumor mechanisms downstream of prophylactic regulatory T-cell depletion. Cancer Res 2010; 70: 2665–2674.
    CAS Google Scholar
  55. Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 2005; 115: 3623–3633.
    CAS Google Scholar
  56. Barnett BG, Ruter J, Kryczek I, Brumlik MJ, Cheng PJ, Daniel BJ et al. Regulatory T cells: a new frontier in cancer immunotherapy. Adv Exp Med Biol 2008; 622: 255–260.
    CAS Google Scholar
  57. Zhou Q, Bucher C, Munger ME, Highfill SL, Tolar J, Munn DH et al. Depletion of endogenous tumor-associated regulatory T cells improves the efficacy of adoptive cytotoxic T-cell immunotherapy in murine acute myeloid leukemia. Blood 2009; 114: 3793–3802.
    CAS Google Scholar
  58. Prince HM, Duvic M, Martin A, Sterry W, Assaf C, Sun Y et al. Phase III placebo-controlled trial of denileukin diftitox for patients with cutaneous T-cell lymphoma. J Clin Oncol 2010; 28: 1870–1877.
    CAS Google Scholar
  59. Nair S, Boczkowski D, Fassnacht M, Pisetsky D, Gilboa E . Vaccination against the forkhead family transcription factor Foxp3 enhances tumor immunity. Cancer Res 2007; 67: 371–380.
    CAS Google Scholar
  60. van ET, van Puijvelde GH, Foks AC, Habets KL, Bot I, Gilboa E et al. Vaccination against Foxp3(+) regulatory T cells aggravates atherosclerosis. Atherosclerosis 2010; 209: 74–80.
    Google Scholar
  61. Larsen SK, Munir S, Woetmann A, Froesig TM, Odum N, Svane IM et al. Functional characterization of Foxp3-specific spontaneous immune responses. Leukemia 2013; 27: 2332–2340.
    CAS Google Scholar
  62. Zhang L, Chen X, Liu X, Kline DE, Teague RM, Gajewski TF et al. CD40 ligation reverses T cell tolerance in acute myeloid leukemia. J Clin Invest 2013; 123: 1999–2010.
    CAS Google Scholar
  63. Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M, Chevriaux A et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res 2010; 70: 3052–3061.
    CAS Google Scholar
  64. Romani L, Bistoni F, Perruccio K, Montagnoli C, Gaziano R, Bozza S et al. Thymosin alpha1 activates dendritic cell tryptophan catabolism and establishes a regulatory environment for balance of inflammation and tolerance. Blood 2006; 108: 2265–2274.
    CAS Google Scholar
  65. Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y, Ron D et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 2005; 22: 633–642.
    CAS Google Scholar
  66. Platten M, Ho PP, Youssef S, Fontoura P, Garren H, Hur EM et al. Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science 2005; 310: 850–855.
    CAS Google Scholar
  67. Munn DH, Mellor AL . Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest 2007; 117: 1147–1154.
    CAS Google Scholar
  68. Smith C, Chang MY, Parker KH, Beury DW, DuHadaway JB, Flick HE et al. IDO is a nodal pathogenic driver of lung cancer and metastasis development. Cancer Discov 2012; 2: 722–735.
    CAS Google Scholar
  69. Curti A, Aluigi M, Pandolfi S, Ferri E, Isidori A, Salvestrini V et al. Acute myeloid leukemia cells constitutively express the immunoregulatory enzyme indoleamine 2,3-dioxygenase. Leukemia 2007; 21: 353–355.
    CAS Google Scholar
  70. Curti A, Trabanelli S, Salvestrini V, Baccarani M, Lemoli RM . The role of indoleamine 2,3-dioxygenase in the induction of immune tolerance: focus on hematology. Blood 2009; 113: 2394–2401.
    CAS Google Scholar
  71. Chamuleau ME, van de Loosdrecht AA, Hess CJ, Janssen JJ, Zevenbergen A, Delwel R et al. High INDO (indoleamine 2,3-dioxygenase) mRNA level in blasts of acute myeloid leukemic patients predicts poor clinical outcome. Haematologica 2008; 93: 1894–1898.
    CAS Google Scholar
  72. Hoshi M, Ito H, Fujigaki H, Takemura M, Takahashi T, Tomita E et al. Changes in serum tryptophan catabolism as an indicator of disease activity in adult T-cell leukemia/lymphoma. Leuk Lymphoma 2009; 50: 1372–1374.
    Google Scholar
  73. Lindstrom V, Aittoniemi J, Jylhava J, Eklund C, Hurme M, Paavonen T et al. Indoleamine 2,3-dioxygenase activity and expression in patients with chronic lymphocytic leukemia. Clin Lymphoma Myeloma Leuk 2012; 12: 363–365.
    CAS Google Scholar
  74. Liu X, Shin N, Koblish HK, Yang G, Wang Q, Wang K et al. Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood 2010; 115: 3520–3530.
    CAS Google Scholar
  75. Lob S, Konigsrainer A, Schafer R, Rammensee HG, Opelz G, Terness P . Levo- but not dextro-1-methyl tryptophan abrogates the IDO activity of human dendritic cells. Blood 2008; 111: 2152–2154.
    CAS Google Scholar
  76. Lob S, Konigsrainer A, Rammensee HG, Opelz G, Terness P . Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the trees? Nat Rev Cancer 2009; 9: 445–452.
    Google Scholar
  77. Sorensen RB, Hadrup SR, Svane IM, Hjortso MC . thor Straten P, Andersen MH. Indoleamine 2,3-dioxygenase specific, cytotoxic T cells as immune regulators. Blood 2011; 117: 2200–2210.
    Google Scholar
  78. Iversen TZ, Engell-Noerregaard L, Ellebaek E, Andersen R, Larsen SK, Bjoern J et al. Long-lasting disease stabilization in the absence of toxicity in metastatic lung cancer patients vaccinated with an epitope derived from indoleamine 2,3 dioxygenase. Clin Cancer Res 2014; 20: 221–232.
    CAS Google Scholar
  79. Yu J, Du W, Yan F, Wang Y, Li H, Cao S et al. Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J Immunol 2013; 190: 3783–3797.
    CAS Google Scholar
  80. Mougiakakos D, Jitschin R, von BL, Poschke I, Gary R, Sundberg B et al. Immunosuppressive CD14+HLA-DRlow/neg IDO+ myeloid cells in patients following allogeneic hematopoietic stem cell transplantation. Leukemia 2013; 27: 377–388.
    CAS Google Scholar
  81. Bronte V, Zanovello P . Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 2005; 5: 641–654.
    CAS Google Scholar
  82. Mussai F, De SC, Abu-Dayyeh I, Booth S, Quek L, McEwen-Smith RM et al. Acute myeloid leukemia creates an arginase-dependent immunosuppressive microenvironment. Blood 2013; 122: 749–758.
    CAS Google Scholar
  83. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006; 314: 126–129.
    CAS Google Scholar
  84. Muller AJ, DuHadaway JB, Donover PS, Sutanto-Ward E, Prendergast GC . Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat Med 2005; 11: 312–319.
    CAS Google Scholar

Download references