Proteomic analysis of membrane microdomain-associated proteins in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder reveals alterations in LAMP, STXBP1 and BASP1 protein expression - Molecular Psychiatry (original) (raw)
Guidotti A, Auta J, Davis JM, Dong E, Grayson DR, Veldic M et al. GABAergic dysfunction in schizophrenia: new treatment strategies on the horizon. Psychopharmacology (Berl) 2005; 180: 191–205. ArticleCAS Google Scholar
Beneyto M, Kristiansen LV, Oni-Orisan A, McCullumsmith RE, Meador-Woodruff JH . Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia and mood disorders. Neuropsychopharmacology 2007; 32: 1888–1902. ArticleCASPubMed Google Scholar
Beneyto M, Meador-Woodruff JH . Lamina-specific abnormalities of AMPA receptor trafficking and signaling molecule transcripts in the prefrontal cortex in schizophrenia. Synapse 2006; 60: 585–598. ArticleCASPubMed Google Scholar
Goldman-Rakic PS, Selemon LD . Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizophr Bull 1997; 23: 437–458. ArticleCASPubMed Google Scholar
Sanfilipo M, Lafargue T, Rusinek H, Arena L, Loneragan C, Lautin A et al. Volumetric measure of the frontal and temporal lobe regions in schizophrenia: relationship to negative symptoms. Arch Gen Psychiatry 2000; 57: 471–480. ArticleCASPubMed Google Scholar
Harrison PJ, Weinberger DR . Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 2005; 10: 40–68; image 5. ArticleCASPubMed Google Scholar
Brambilla P, Glahn DC, Balestrieri M, Soares JC . Magnetic resonance findings in bipolar disorder. Psychiatr Clin North Am 2005; 28: 443–467. ArticlePubMed Google Scholar
Rajkowska G, Halaris A, Selemon LD . Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder. Biol Psychiatry 2001; 49: 741–752. ArticleCASPubMed Google Scholar
Rajkowska G, Miguel-Hidalgo JJ, Makkos Z, Meltzer H, Overholser J, Stockmeier C . Layer-specific reductions in GFAP-reactive astroglia in the dorsolateral prefrontal cortex in schizophrenia. Schizophr Res 2002; 57: 127–138. ArticlePubMed Google Scholar
Cotter D, Mackay D, Chana G, Beasley C, Landau S, Everall IP . Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb Cortex 2002; 12: 386–394. ArticlePubMed Google Scholar
Black JE, Kodish IM, Grossman AW, Klintsova AY, Orlovskaya D, Vostrikov V et al. Pathology of layer V pyramidal neurons in the prefrontal cortex of patients with schizophrenia. Am J Psychiatry 2004; 161: 742–744. ArticlePubMed Google Scholar
Lewis DA, Hashimoto T . Deciphering the disease process of schizophrenia: the contribution of cortical gaba neurons. Int Rev Neurobiol 2007; 78: 109–131. ArticleCASPubMed Google Scholar
Lewis DA, Moghaddam B . Cognitive dysfunction in schizophrenia: convergence of gamma-aminobutyric acid and glutamate alterations. Arch Neurol 2006; 63: 1372–1376. ArticlePubMed Google Scholar
Beasley CL, Pennington K, Behan A, Wait R, Dunn MJ, Cotter D . Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders: evidence for disease-associated changes. Proteomics 2006; 6: 3414–3425. ArticleCASPubMed Google Scholar
Clark D, Dedova I, Cordwell S, Matsumoto I . A proteome analysis of the anterior cingulate cortex gray matter in schizophrenia. Mol Psychiatry 2006; 11: 423, 459–470. Article Google Scholar
Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL et al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 2004; 9: 643, 684–697. Article Google Scholar
Pennington K, Beasley CL, Dicker P, Fagan A, English J, Pariante CM et al. Prominent synaptic and metabolic abnormalities revealed by proteomic analysis of the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder. Mol Psychiatry 2007; Oct 16 e-pub ahead of print.
Dean B, Opeskin K, Pavey G, Hill C, Keks N . Changes in protein kinase C and adenylate cyclase in the temporal lobe from subjects with schizophrenia. J Neural Transm 1997; 104: 1371–1381. ArticleCASPubMed Google Scholar
Opeskin K, Dean B, Pavey G, Hill C, Keks N, Copolov D . Neither protein kinase C nor adenylate cyclase are altered in the striatum from subjects with schizophrenia. Schizophr Res 1996; 22: 159–164. ArticleCASPubMed Google Scholar
Pennington K, Cotter D, Dunn MJ . The role of proteomics in investigating psychiatric disorders. Br J Psychiatry 2005; 187: 4–6. ArticleCASPubMed Google Scholar
Allen JA, Halverson-Tamboli RA, Rasenick MM . Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci 2007; 8: 128–140. ArticleCASPubMed Google Scholar
Gil C, Soler-Jover A, Blasi J, Aguilera J . Synaptic proteins and SNARE complexes are localized in lipid rafts from rat brain synaptosomes. Biochem Biophys Res Commun 2005; 329: 117–124. ArticleCASPubMed Google Scholar
Li N, Mak A, Richards DP, Naber C, Keller BO, Li L et al. Monocyte lipid rafts contain proteins implicated in vesicular trafficking and phagosome formation. Proteomics 2003; 3: 536–548. ArticleCASPubMed Google Scholar
Bini L, Pacini S, Liberatori S, Valensin S, Pellegrini M, Raggiaschi R et al. Extensive temporally regulated reorganization of the lipid raft proteome following T-cell antigen receptor triggering. Biochem J 2003; 369: 301–309. ArticleCASPubMedPubMed Central Google Scholar
Foster LJ, De Hoog CL, Mann M . Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc Natl Acad Sci USA 2003; 100: 5813–5818. ArticleCASPubMedPubMed Central Google Scholar
Nebl T, Pestonjamasp KN, Leszyk JD, Crowley JL, Oh SW, Luna EJ . Proteomic analysis of a detergent-resistant membrane skeleton from neutrophil plasma membranes. J Biol Chem 2002; 277: 43399–43409. ArticleCASPubMed Google Scholar
Blonder J, Hale ML, Lucas DA, Schaefer CF, Yu LR, Conrads TP et al. Proteomic analysis of detergent-resistant membrane rafts. Electrophoresis 2004; 25: 1307–1318. ArticleCASPubMed Google Scholar
Jia J, Lamer S, Schüemann M, Schmidt M, Krause E, Haucke V . Quantitative proteomic analysis of detergent-resistant membranes from chemical synapses: evidence for cholesterol as spatial organizer of synaptic vesicle cycling. Mol Cell Proteomics 2006; 5: 2060–2071. ArticleCASPubMed Google Scholar
Martosella J, Zolotarjova N, Liu H, Moyer SC, Perkins PD, Boyes BE . High recovery HPLC separation of lipid rafts for membrane proteome analysis. J Proteome Res 2006; 5: 1301–1312. ArticleCASPubMed Google Scholar
Parkin ET, Hussain I, Karran EH, Turner AJ, Hooper NM . Characterization of detergent-insoluble complexes containing the familial Alzheimer's disease-associated presenilins. J Neurochem 1999; 72: 1534–1543. ArticleCASPubMed Google Scholar
Jiang L, He L, Fountoulakis M . Comparison of protein precipitation methods for sample preparation prior to proteomic analysis. J Chromatogr A 2004; 1023: 317–320. ArticleCASPubMed Google Scholar
Maguire PB, Wynne KJ, Harney DF, O’Donoghue NM, Stephens G, Fitzgerald DJ . Identification of the phosphotyrosine proteome from thrombin activated platelets. Proteomics 2002; 2: 642–648. ArticleCASPubMed Google Scholar
Behan A, Doyle S, Farrell M . Adaptive responses to mitochondrial dysfunction in the rho degrees Namalwa cell. Mitochondrion 2005; 5: 173–193. ArticleCASPubMed Google Scholar
Sanchez JC, Rouge V, Pisteur M, Ravier F, Tonella L, Moosmayer M et al. Improved and simplified in-gel sample application using reswelling of dry immobilized pH gradients. Electrophoresis 1997; 18: 324–327. ArticleCASPubMed Google Scholar
Focking M, Boersema PJ, O’Donoghue N, Lubec G, Pennington SR, Cotter DR et al. 2-D DIGE as a quantitative tool for investigating the HUPO Brain Proteome Project mouse series. Proteomics 2006; 6: 4914–4931. ArticleCASPubMed Google Scholar
Beasley CL, Honer WG, Bergmann K, Falkai P, Lütjohann D, Bayer TA . Reductions in cholesterol and synaptic markers in association cortex in mood disorders. Bipolar Disord 2005; 7: 449–455. ArticleCASPubMed Google Scholar
Yan JX, Wait R, Berkelman T, Harry RA, Westbrook JA, Wheeler CH et al. A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 2000; 21: 3666–3672. ArticleCASPubMed Google Scholar
Shevchenko A, Wilm M, Vorm O, Mann M . Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 1996; 68: 850–858. ArticleCASPubMed Google Scholar
Coppinger JA, Cagney G, Toomey S, Kislinger T, Belton O, McRedmond JP et al. Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood 2004; 103: 2096–2104. ArticleCASPubMed Google Scholar
Nesvizhskii AI, Keller A, Kolker E, Aebersold R . A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 2003; 75: 4646–4658. ArticleCASPubMed Google Scholar
Kokubo H, Helms JB, Ohno-Iwashita Y, Shimada Y, Horikoshi Y, Yamaguchi H . Ultrastructural localization of flotillin-1 to cholesterol-rich membrane microdomains, rafts, in rat brain tissue. Brain Res 2003; 965: 83–90. ArticleCASPubMed Google Scholar
Slaughter N, Laux I, Tu X, Whitelegge J, Zhu X, Effros R et al. The flotillins are integral membrane proteins in lipid rafts that contain TCR-associated signaling components: implications for T-cell activation. Clin Immunol 2003; 108: 138–151. ArticleCASPubMed Google Scholar
Harder T, Scheiffele P, Verkade P, Simons K . Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 1998; 141: 929–942. ArticleCASPubMedPubMed Central Google Scholar
Khan TK, Yang B, Thompson NL, Maekawa S, Epand RM, Jacobson K . Binding of NAP-22, a calmodulin-binding neuronal protein, to raft-like domains in model membranes. Biochemistry 2003; 42: 4780–4786. ArticleCASPubMed Google Scholar
Gil C, Cubi R, Blasi J, Aguilera J . Synaptic proteins associate with a sub-set of lipid rafts when isolated from nerve endings at physiological temperature. Biochem Biophys Res Commun 2006; 348: 1334–1342. ArticleCASPubMed Google Scholar
Funatsu N, Miyata S, Kumanogoh H, Shigeta M, Hamada K, Endo Y et al. Characterization of a novel rat brain glycosylphosphatidylinositol-anchored protein (Kilon), a member of the IgLON cell adhesion molecule family. J Biol Chem 1999; 274: 8224–8230. ArticleCASPubMed Google Scholar
Niethammer P, Delling M, Sytnyk V, Dityatev A, Fukami K, Schachner M . Cosignaling of NCAM via lipid rafts and the FGF receptor is required for neuritogenesis. J Cell Biol 2002; 157: 521–532. ArticleCASPubMedPubMed Central Google Scholar
Kim KB, Lee JW, Lee CS, Kim BW, Choo HJ, Jung SY et al. Oxidation–reduction respiratory chains and ATP synthase complex are localized in detergent-resistant lipid rafts. Proteomics 2006; 6: 2444–2453. ArticleCASPubMed Google Scholar
Raimondo F, Ceppi P, Guidi K, Masserini M, Foletti C, Pitto M . Proteomics of plasma membrane microdomains. Expert Rev Proteomics 2005; 2: 793–807. ArticleCASPubMed Google Scholar
Behan ÁT, Wynne M, Clarke K, Sullivan MM, Cotter DM, Maguire PM . Analysis of membrane microdomain-associated proteins in the insular cortex of post-mortem human brain. Proteomics Clin Appl 2007; 1: 1324–1331. ArticleCASPubMed Google Scholar
Quinton TM, Kim S, Jin J, Kunapuli SP . Lipid rafts are required in Galpha(i) signaling downstream of the P2Y12 receptor during ADP-mediated platelet activation. J Thromb Haemost 2005; 3: 1036–1041. ArticleCASPubMed Google Scholar
Mitchell SJ, Ryan TA . Munc18-dependent regulation of synaptic vesicle exocytosis by syntaxin-1A in hippocampal neurons. Neuropharmacology 2005; 48: 372–380. ArticleCASPubMed Google Scholar
Rickman C, Medine CN, Bergmann A, Duncan RR . Functionally and spatially distinct modes of munc18-syntaxin 1 interaction. J Biol Chem 2007; 282: 12097–12103. ArticleCASPubMed Google Scholar
Sokolov BP, Tcherepanov AA, Haroutunian V, Davis KL . Levels of mRNAs encoding synaptic vesicle and synaptic plasma membrane proteins in the temporal cortex of elderly schizophrenic patients. Biol Psychiatry 2000; 48: 184–196. ArticleCASPubMed Google Scholar
Gabriel SM, Haroutunian V, Powchik P, Honer WG, Davidson M, Davies P et al. Increased concentrations of presynaptic proteins in the cingulate cortex of subjects with schizophrenia. Arch Gen Psychiatry 1997; 54: 559–566. ArticleCASPubMed Google Scholar
Honer WG, Falkai P, Young C, Wang T, Xie J, Bonner J et al. Cingulate cortex synaptic terminal proteins and neural cell adhesion molecule in schizophrenia. Neuroscience 1997; 78: 99–110. ArticleCASPubMed Google Scholar
Halim ND, Weickert CS, McClintock BW, Hyde TM, Weinberger DR, Kleinman JE et al. Presynaptic proteins in the prefrontal cortex of patients with schizophrenia and rats with abnormal prefrontal development. Mol Psychiatry 2003; 8: 797–810. ArticleCASPubMed Google Scholar
Honer WG, Falkai P, Bayer TA, Xie J, Hu L, Li HY et al. Abnormalities of SNARE mechanism proteins in anterior frontal cortex in severe mental illness. Cereb Cortex 2002; 12: 349–356. ArticlePubMed Google Scholar
Mukaetova-Ladinska EB, Hurt J, Honer WG, Harrington CR, Wischik CM . Loss of synaptic but not cytoskeletal proteins in the cerebellum of chronic schizophrenics. Neurosci Lett 2002; 317: 161–165. ArticleCASPubMed Google Scholar
Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 2001; 98: 4746–4751. ArticleCASPubMedPubMed Central Google Scholar
Maekawa S, Iino S, Miyata S . Molecular characterization of the detergent-insoluble cholesterol-rich membrane microdomain (raft) of the central nervous system. Biochim Biophys Acta 2003; 1610: 261–270. ArticleCASPubMed Google Scholar
Frey D, Laux T, Xu L, Schneider C, Caroni P . Shared and unique roles of CAP23 and GAP43 in actin regulation, neurite outgrowth, and anatomical plasticity. J Cell Biol 2000; 149: 1443–1454. ArticleCASPubMedPubMed Central Google Scholar
Eastwood SL, Harrison PJ . Synaptic pathology in the anterior cingulate cortex in schizophrenia and mood disorders. A review and a Western blot study of synaptophysin, GAP-43 and the complexins. Brain Res Bull 2001; 55: 569–578. ArticleCASPubMed Google Scholar
Weickert CS, Webster MJ, Hyde TM, Herman MM, Bachus SE, Bali G et al. Reduced GAP-43 mRNA in dorsolateral prefrontal cortex of patients with schizophrenia. Cereb Cortex 2001; 11: 136–147. ArticleCASPubMed Google Scholar
Eastwood SL, Harrison PJ . Hippocampal and cortical growth-associated protein-43 messenger RNA in schizophrenia. Neuroscience 1998; 86: 437–448. ArticleCASPubMed Google Scholar
Horton HL, Levitt P . A unique membrane protein is expressed on early developing limbic system axons and cortical targets. J Neurosci 1988; 8: 4653–4661. ArticleCASPubMedPubMed Central Google Scholar
Zacco A, Cooper V, Chantler PD, Fisher-Hyland S, Horton HL, Levitt P . Isolation, biochemical characterization and ultrastructural analysis of the limbic system-associated membrane protein (LAMP), a protein expressed by neurons comprising functional neural circuits. J Neurosci 1990; 10: 73–90. ArticleCASPubMedPubMed Central Google Scholar
Pimenta AF, Levitt P . Characterization of the genomic structure of the mouse limbic system-associated membrane protein (Lsamp) gene. Genomics 2004; 83: 790–801. ArticleCASPubMed Google Scholar
Harrison PJ . The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 1999; 122 (Part 4): 593–624. ArticlePubMed Google Scholar
Iwamoto K, Bundo M, Kato T . Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet 2005; 14: 241–253. ArticleCASPubMed Google Scholar
Steiner P, Sarria JC, Huni B, Marsault R, Catsicas S, Hirling H . Overexpression of neuronal Sec1 enhances axonal branching in hippocampal neurons. Neuroscience 2002; 113: 893–905. ArticleCASPubMed Google Scholar
Bellon A . New genes associated with schizophrenia in neurite formation: a review of cell culture experiments. Mol Psychiatry 2007; 12: 620–629. ArticleCASPubMed Google Scholar
Shirasu M, Kimura K, Kataoka M, Takahashi M, Okajima S, Kawaguchi S et al. VAMP-2 promotes neurite elongation and SNAP-25A increases neurite sprouting in PC12 cells. Neurosci Res 2000; 37: 265–275. ArticleCASPubMed Google Scholar
Knable MB, Barci BM, Bartko JJ, Webster MJ, Torrey EF . Molecular abnormalities in the major psychiatric illnesses: classification and regression tree (CRT) analysis of post-mortem prefrontal markers. Mol Psychiatry 2002; 7: 392–404. ArticleCASPubMed Google Scholar
McCullumsmith RE, Kristiansen LV, Beneyto M, Scarr E, Dean B, Meador-Woodruff JH . Decreased NR1, NR2A, and SAP102 transcript expression in the hippocampus in bipolar disorder. Brain Res 2007; 1127: 108–118. ArticleCASPubMed Google Scholar
Blennow K, Bogdanovic N, Gottfries CG, Davidsson P . The growth-associated protein GAP-43 is increased in the hippocampus and in the gyrus cinguli in schizophrenia. J Mol Neurosci 1999; 13: 101–109. ArticleCASPubMed Google Scholar
Perrone-Bizzozero NI et al. Levels of the growth-associated protein GAP-43 are selectively increased in association cortices in schizophrenia. Proc Natl Acad Sci USA 1996; 93: 14182–14187. ArticleCASPubMedPubMed Central Google Scholar
Sower AC, Bird ED, Perrone-Bizzozero NI . Increased levels of GAP-43 protein in schizophrenic brain tissues demonstrated by a novel immunodetection method. Mol Chem Neuropathol 1995; 24: 1–11. ArticleCASPubMed Google Scholar
Scarr E, Gray L, Keriakous D, Robinson PJ, Dean B . Increased levels of SNAP-25 and synaptophysin in the dorsolateral prefrontal cortex in bipolar I disorder. Bipolar Disord 2006; 8: 133–143. ArticleCASPubMed Google Scholar
Chambers JS, Thomas D, Saland L, Neve RL, Perrone-Bizzozero NI . Growth-associated protein 43 (GAP-43) and synaptophysin alterations in the dentate gyrus of patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29: 283–290. ArticleCASPubMed Google Scholar
Vawter MP . Dysregulation of the neural cell adhesion molecule and neuropsychiatric disorders. Eur J Pharmacol 2000; 405: 385–395. ArticleCASPubMed Google Scholar
Barr AM, Young CE, Phillips AG, Honer WG . Selective effects of typical antipsychotic drugs on SNAP-25 and synaptophysin in the hippocampal trisynaptic pathway. Int J Neuropsychopharmacol 2006; 9: 457–463. ArticleCASPubMed Google Scholar
Eastwood SL, Heffernan J, Harrison PJ . Chronic haloperidol treatment differentially affects the expression of synaptic and neuronal plasticity-associated genes. Mol Psychiatry 1997; 2: 322–329. ArticleCASPubMed Google Scholar