Subendothelial retention of atherogenic lipoproteins in early atherosclerosis (original) (raw)
Ross, R. Cell biology of atherosclerosis. Annu. Rev. Physiol.57, 791–804 (1995) ArticleCAS Google Scholar
Glass, C. K. & Witztum, J. L. Atherosclerosis. The Road Ahead. Cell104, 503–516 (2001) ArticleCAS Google Scholar
Williams, K. J. & Tabas, I. The response-to-retention hypothesis of early atherogenesis. Arterioscler. Thromb. Vasc. Biol.15, 551–561 (1995) ArticleCAS Google Scholar
Srinivasan, S. R. et al. Low density lipoprotein retention by aortic tissue. Contribution of extracellular matrix. Atherosclerosis62, 201–208 (1986) ArticleCAS Google Scholar
Boren, J. et al. Identification of the principal proteoglycan-binding site in LDL. A single-point mutation in apo-B100 severely affects proteoglycan interaction without affecting LDL receptor binding. J. Clin. Invest.101, 2658–2664 (1998) ArticleCAS Google Scholar
Boren, J. et al. Identification of the low density lipoprotein receptor-binding site in apolipoprotein B100 and the modulation of its binding activity by the carboxyl terminus in familial defective apo-B100. J. Clin. Invest.101, 1084–1093 (1998) ArticleCAS Google Scholar
Weisgraber, K. H. & Rall, S. C. Jr Human apolipoprotein B-100 heparin-binding sites. J. Biol. Chem.262, 11097–11103 (1987) CASPubMed Google Scholar
Hirose, N., Blankenship, D. T., Krivanek, M. A., Jackson, R. L. & Cardin, A. D. Isolation and characterization of four heparin-binding cyanogen bromide peptides of human plasma apolipoprotein B. Biochemistry26, 5505–5512 (1987) ArticleCAS Google Scholar
Camejo, G., Olofsson, S. O., Lopez, F., Carlsson, P. & Bondjers, G. Identification of Apo B-100 segments mediating the interaction of low density lipoproteins with arterial proteoglycans. Arteriosclerosis8, 368–377 (1988) ArticleCAS Google Scholar
Yao, Z. et al. Elimination of apolipoprotein B48 formation in rat hepatoma cell lines transfected with mutant human apolipoprotein B cDNA constructs. J. Biol. Chem.267, 1175–1182 (1992) CASPubMed Google Scholar
Goldberg, I. J. et al. The NH2-terminal region of apolipoprotein B is sufficient for lipoprotein association with glycosaminoglycans. J. Biol. Chem.273, 35355–35361 (1998) ArticleCAS Google Scholar
Simionescu, M. & Simionescu, N. Endothelial transport of macromolecules: transcytosis and endocytosis. A look from cell biology. Cell Biol. Rev.25, 5–78 (1991) CASPubMed Google Scholar
Tangirala, R. K., Rubin, E. M. & Palinski, W. Quantitation of atherosclerosis in murine models: Correlation between lesions in the aortic origin and in the entire aorta, and differences in the extent of lesions between sexes in LDL receptor-deficient and apolipoprotein E-deficient mice. J. Lipid Res.36, 2320–2328 (1995) CASPubMed Google Scholar
Puhl, H., Waeg, G. & Esterbauer, H. Methods to determine oxidation of low-density lipoproteins. Methods Enzymol.233, 425–441 (1994) ArticleCAS Google Scholar
Yagi, K. A simple fluorometric assay for lipoperoxide in blood plasma. Biochem. Med.15, 212–216 (1976) ArticleCAS Google Scholar
Ji, Z. S., Pitas, R. E. & Mahley, R. W. Differential cellular accumulation/retention of apolipoprotein E mediated by cell surface heparan sulfate proteoglycans. Apolipoproteins E3 and E2 greater than E4. J. Biol. Chem.273, 13452–13460 (1998) ArticleCAS Google Scholar
Brissette, L., Roach, P. D. & Noel, S. P. The effects of liposome-reconstituted apolipoproteins on the binding of rat intermediate density lipoproteins to rat liver membranes. J. Biol. Chem.261, 11631–11638 (1986) CASPubMed Google Scholar
Milne, R. W., Theolis, R. Jr, Verdery, R. B. & Marcel, Y. L. Characterization of monoclonal antibodies against human low density lipoprotein. Arteriosclerosis3, 23–30 (1983) ArticleCAS Google Scholar
Purcell-Huynh, D. A. et al. Transgenic mice expressing high levels of human apolipoprotein B develop severe atherosclerotic lesions in response to a high-fat diet. J. Clin. Invest.95, 2246–2257 (1995) ArticleCAS Google Scholar
Nicoletti, A., Kaveri, S., Caligiuri, G., Bariety, J. & Hansson, G. K. Immunoglobulin treatment reduces atherosclerosis in apo E knockout mice. J. Clin. Invest.102, 910–918 (1998) ArticleCAS Google Scholar
Mahley, R. W. et al. Inhibition of lipoprotein binding to cell surface receptors of fibroblasts following selective modification of arginyl residues in arginine-rich and B apoproteins. J. Biol. Chem.252, 7279–7287 (1977) CASPubMed Google Scholar
Ohlsson, B. G. et al. Oxidized low density lipoprotein inhibits lipopolysaccharide-induced binding of nuclear factor-kappaB to DNA and the subsequent expression of tumour necrosis factor-α and interleukin-1β in macrophages. J. Clin. Invest.98, 78–89 (1996) ArticleCAS Google Scholar
McFarlane, A. S. Efficient trace-labelling of proteins with iodine. Nature182, 53 (1958) ArticleADSCAS Google Scholar
Hurt-Camejo, E. et al. Effect of arterial proteoglycans and glycosaminoglycans on low density lipoprotein oxidation and its uptake by human macrophages and arterial smooth muscle cells. Arterioscler. Thromb.12, 569–583 (1992) ArticleCAS Google Scholar
Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol.37, 911–917 (1959) ArticleCAS Google Scholar
Randle, D. H., Zindy, F., Sherr, C. J. & Roussel, M. F. Differential effects of p19Arf and p16Ink4a loss on senescence of murine bone marrow-derived preB cells and macrophages. Proc. Natl Acad. Sci. USA98, 9654–9659 (2001) ArticleADSCAS Google Scholar
Stanley, E. R. The macrophage colony-stimulating factor, CSF-1. Methods Enzymol.116, 564–587 (1985) ArticleCAS Google Scholar
Schwenke, D. C. Gender differences in intima-media permeability to low-density lipoprotein at atherosclerosis-prone aortic sites in rabbits. Lack of effect of 17 β-estradiol. Arterioscler. Thromb. Vasc. Biol.17, 2150–2157 (1997) ArticleCAS Google Scholar