Synaptotagmins I and IV promote transmitter release independently of Ca2+ binding in the C2A domain (original) (raw)
References
Chapman, E. R., Hanson, P. I., An, S. & Jahn, R. Ca2+ regulates the interaction between synaptotagmin and syntaxin 1. J. Biol. Chem.270, 23667–23671 (1995) ArticleCASPubMed Google Scholar
Chapman, E. R. & Jahn, R. Calcium-dependent interaction of the cytoplasmic region of synaptotagmin with membranes. Autonomous function of a single C2-homologous domain. J. Biol. Chem.269, 5735–5741 (1994) CASPubMed Google Scholar
Davletov, B. A. & Sudhof, T. C. A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding. J. Biol. Chem.268, 26386–26390 (1993) CASPubMed Google Scholar
Li, C., Davletov, B. A. & Sudhof, T. C. Distinct Ca2+ and Sr2 + binding properties of synaptotagmins. Definition of candidate Ca2+ sensors for the fast and slow components of neurotransmitter release. J. Biol. Chem.270, 24898–24902 (1995) ArticleCASPubMed Google Scholar
Fernandez-Chacon, R. et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature410, 41–49 (2001) ArticleCASADSPubMed Google Scholar
Damer, C. K. & Creutz, C. E. Synergistic membrane interactions of the two C2 domains of synaptotagmin. J. Biol. Chem.269, 31115–31123 (1994) CASPubMed Google Scholar
Desai, R. C. et al. The C2B domain of synaptotagmin is a Ca2+-sensing module essential for exocytosis. J. Cell Biol.150, 1125–1136 (2000) ArticleCASPubMedPubMed Central Google Scholar
Nonet, M. L., Grundahl, K., Meyer, B. J. & Rand, J. B. Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin. Cell73, 1291–1305 (1993) ArticleCASPubMed Google Scholar
Broadie, K., Bellen, H. J., DiAntonio, A., Littleton, J. T. & Schwarz, T. L. Absence of synaptotagmin disrupts excitation-secretion coupling during synaptic transmission. Proc. Natl Acad. Sci. USA91, 10727–10731 (1994) ArticleCASADSPubMedPubMed Central Google Scholar
DiAntonio, A. & Schwarz, T. L. The effect on synaptic physiology of synaptotagmin mutations in Drosophila. Neuron12, 909–920 (1994) ArticleCASPubMed Google Scholar
Littleton, J. T., Stern, M., Perin, M. & Bellen, H. J. Calcium dependence of neurotransmitter release and rate of spontaneous vesicle fusions are altered in Drosophila synaptotagmin mutants. Proc. Natl Acad. Sci. USA91, 10888–10892 (1994) ArticleCASADSPubMedPubMed Central Google Scholar
Geppert, M. et al. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell79, 717–727 (1994) ArticleCASPubMed Google Scholar
Jorgensen, E. M. et al. Defective recycling of synaptic vesicles in synaptotagmin mutants of Caenorhabditis elegans. Nature378, 196–199 (1995) ArticleCASADSPubMed Google Scholar
Reist, N. E. et al. Morphologically docked synaptic vesicles are reduced in synaptotagmin mutants of Drosophila. J. Neurosci.18, 7662–7673 (1998) ArticleCASPubMedPubMed Central Google Scholar
Littleton, J. T., Serano, T. L., Rubin, G. M., Ganetzky, B. & Chapman, E. R. Synaptic function modulated by changes in the ratio of synaptotagmin I and IV. Nature400, 757–760 (1999) ArticleCASADSPubMed Google Scholar
Wang, C. T. et al. Synaptotagmin modulation of fusion pore kinetics in regulated exocytosis of dense-core vesicles. Science294, 1111–1115 (2001) ArticleCASADSPubMed Google Scholar
Ubach, J., Zhang, X., Shao, X., Sudhof, T. C. & Rizo, J. Ca2+ binding to synaptotagmin: how many Ca2+ ions bind to the tip of a C2-domain? EMBO J.17, 3921–3930 (1998) ArticleCASPubMedPubMed Central Google Scholar
Li, C. et al. Ca2+-dependent and -independent activities of neural and non-neural synaptotagmins. Nature375, 594–599 (1995) ArticleCASADSPubMed Google Scholar
Zhang, X., Rizo, J. & Sudhof, T. C. Mechanism of phospholipid binding by the C2A-domain of synaptotagmin I. Biochemistry37, 12395–12403 (1998) ArticleCASPubMed Google Scholar
von Poser, C., Ichtchenko, K., Shao, X., Rizo, J. & Sudhof, T. C. The evolutionary pressure to inactivate. A subclass of synaptotagmins with an amino acid substitution that abolishes Ca2+ binding. J. Biol. Chem.272, 14314–14319 (1997) ArticleCASPubMed Google Scholar
Loewen, C. A., Mackler, J. M. & Reist, N. E. Drosophila synaptotagmin I null mutants survive to early adulthood. Genesis31, 30–36 (2001) ArticleCASPubMed Google Scholar
Rizo, J. & Sudhof, T. C. C2-domains, structure and function of a universal Ca2+-binding domain. J. Biol. Chem.273, 15879–15882 (1998) ArticleCASPubMed Google Scholar
Mackler, J. M., Drummond, J. A., Loewen, C. A., Robinson, I. M. & Reist, N. E. The C2B Ca2+-binding motif of synaptotagmin is required for synaptic transmission in vivo. Nature advance online publication, 7 July 2002 (doi:10.1038/nature00846)
Voets, T. et al. Intracellular calcium dependence of large dense-core vesicle exocytosis in the absence of synaptotagmin I. Proc. Natl Acad. Sci. USA98, 11680–11685 (2001) ArticleCASADSPubMedPubMed Central Google Scholar
Zhang, J. Z., Davletov, B. A., Sudhof, T. C. & Anderson, R. G. Synaptotagmin I is a high affinity receptor for clathrin AP-2: implications for membrane recycling. Cell78, 751–760 (1994) ArticleCASPubMed Google Scholar
Haucke, V. & De Camilli, P. AP-2 recruitment to synaptotagmin stimulated by tyrosine-based endocytic motifs. Science285, 1268–1271 (1999) ArticleCASPubMed Google Scholar
Burgoyne, R. D. & Morgan, A. Calcium sensors in regulated exocytosis. Cell Calcium24, 367–376 (1998) ArticleCASPubMed Google Scholar
DiAntonio, A., Parfitt, K. O. & Schwartz, T. L. Synaptic transmission persists in synaptotagmin mutants of Drosophila. Cell73, 1281–1290 (1993) ArticleCASPubMed Google Scholar