Coordination of circadian timing in mammals (original) (raw)
Reppert, S. M. & Weaver, D. R. Molecular analysis of mammalian circadian rhythms. Ann. Rev. Physiol.63, 647–676 (2001) CAS Google Scholar
Bunney, W. E. & Bunney, B. G. Molecular clock genes in man and lower animals: possible implications for circadian abnormalities in depression. Neuropsychopharmacolgy22, 335–345 (2000) CAS Google Scholar
Welsh, D. K., Logothetis, D. E., Meister, M. & Reppert, S. M. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phase circadian firing rhythms. Neuron14, 697–706 (1995) CASPubMed Google Scholar
Jagota, A., de la Iglesia, H. O. & Schwartz, W. J. Morning and evening circadian oscillations in the suprachiasmatic nucleus in vitro. Nature Neurosci.3, 372–376 (2000) CASPubMed Google Scholar
Low-Zeddies, S. S. & Takahashi, J. S. Chimera analysis of the Clock mutation in mice shows that complex cellular integration determines circadian behaviour. Cell105, 25–42 (2001) CASPubMedPubMed Central Google Scholar
Hamada, T., LeSauter, J., Venuti, J. M. & Silver, R. Expression of Period genes: rhythmic and nonrhythmic compartments of the suprachiasmatic nucleus pacemaker. J. Neurosci.21, 7742–7750 (2001) CASPubMedPubMed Central Google Scholar
Balsalobre, A., Damiola, F. & Schibler, U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell93, 929–937 (1998) CASPubMed Google Scholar
Zylka, M. J., Shearman, L. P., Weaver, D. R. & Reppert, S. M. Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron20, 1103–1110 (1998) CASPubMed Google Scholar
Yamazaki, S. et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science288, 682–685 (2000) ADSCASPubMed Google Scholar
Pando, M. P., Morse, D., Cermakian N. & Sassone-Corsi, P. Phenotypic rescue of a peripheral clock genetic defect via SCN hierarchical dominance. Cell110, 107–117 (2002) CASPubMed Google Scholar
Yagita, K., Tamanini, F., van Der Horst, G. T. & Okamura, H. Molecular mechanisms of the biological clock in cultured fibroblasts. Science292, 278–281 (2001) ArticleADSCASPubMed Google Scholar
Young, M. W. & Kay, S. A. Time zones: a comparative genetics of circadian clocks. Nature Rev. Genet.2, 702–715 (2001) CASPubMed Google Scholar
Shimomura, K. et al. Genome-wide epistatic interaction analysis reveals complex genetic determinants of circadian behaviour in mice. Genome Res.11, 959–980 (2001) CASPubMed Google Scholar
Gekakis, N. et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science280, 1564–1569 (1998) ADSCASPubMed Google Scholar
Hogenesch, J. B., Gu, Y.-Z., Jain, S. & Bradfield, C. A. The basic helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc. Natl Acad. Sci. USA95, 5474–5479 (1998) ADSCASPubMedPubMed Central Google Scholar
Bunger, M. K. et al. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell103, 1009–1017 (2000) CASPubMedPubMed Central Google Scholar
Kume, K. et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell98, 193–205 (1999) CASPubMed Google Scholar
Vitaterna, M. H. et al. Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc. Natl Acad. Sci. USA96, 12114–12119 (1999) ADSCASPubMedPubMed Central Google Scholar
Okamura, H. et al. Photic induction of mPer1 and mPer2 in cry-deficient mice lacking a biological clock. Science286, 2531–2534 (1999) CASPubMed Google Scholar
Shearman, L. P. et al. Interacting molecular loops in the mammalian circadian clock. Science288, 1013–1019 (2000) ADSCASPubMed Google Scholar
Oishi, K., Fukui, H. & Ishida, N. Rhythmic expression of BMAL1 mRNA is altered in Clock mutant mice: differential regulation in the suprachiasmatic nucleus and peripheral tissues. Biochem. Biophys. Res. Commun.268, 164–171 (2000) CASPubMed Google Scholar
Preitner, N. et al. The orphan nuclear receptor REV-ERBa controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell110, 251–260 (2002) CASPubMed Google Scholar
Ueda, H. R. et al. A transcription factor response element for gene expression during circadian night. Nature418, 534–539 (2002) ADSCASPubMed Google Scholar
Yu, W., Nomura, M. & Ikea, M. Interacting feedback loops within the mammalian clock: BMAL1 is negatively autoregulated and upregulated by CRY1, CRY2, and PER2. Biochem. Biophys. Res. Comm.290, 933–942 (2002) CASPubMed Google Scholar
Bae, K. et al. Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron30, 525–536 (2001) MathSciNetCASPubMed Google Scholar
Zheng, B. et al. Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell105, 683–694 (2001) CASPubMed Google Scholar
van der Horst, G. T. J. et al. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature398, 627–630 (1999) ADSCASPubMed Google Scholar
Zheng, B. et al. The mPer2 gene encodes a function component of the mammalian clock. Nature400, 169–173 (1999) ADSCASPubMed Google Scholar
Cermakian, N., Monaco, L., Pando, M. P., Dierich, A. & Sassone-Corsi, P. Altered behavioural rhythms and clock gene expression in mice with a targeted mutation in the Period1 gene. EMBO J.20, 3967–3974 (2001) CASPubMedPubMed Central Google Scholar
Shearman, L. P., Jin, X., Lee, C., Reppert, S. M. & Weaver, D. R. Targeted disruption of the mPer3 gene: Subtle effects on circadian clock function. Mol. Cell. Biol.20, 6269–6275 (2000) CASPubMedPubMed Central Google Scholar
Lee, C., Etchegaray, J. P., Cagampang, F. R., Loudon, A. S. & Reppert, S. M. Posttranslational mechanisms regulate the mammalian circadian clock. Cell107, 855–867 (2001) CASPubMed Google Scholar
Eide, E. J., Vielhaber, E. L., Hinz, W. A. & Virshup, D. M. The circadian regulatory protein BMAL1 and cryptochromes are substrates of casein kinase 1ɛ (CKIɛ). J. Biol. Chem.277, 17248–17254 (2002) CASPubMed Google Scholar
Sanada, K., Okano, T. & Fukada, Y. Mitogen-activated protein kinase phosphorylates and negatively regulates basic helix-loop-helix-PAS transcription factor BMAL1. J. Biol. Chem.277, 267–271 (2002) CASPubMed Google Scholar
Lowrey, P. L. et al. Positional syntenic cloning and functional characterization of a mammalian circadian mutation tau. Science288, 483–491 (2000) ADSCASPubMedPubMed Central Google Scholar
Toh, K. L. et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science291, 1040–1043 (2001) ADSCASPubMed Google Scholar
Akashi, M., Tsuchiya, Y., Yoshino, T. & Nishida, E. Control of intracellular dynamics of mammalian period proteins by casein kinase I epsilon (CKIɛ) and CKIδ in cultured cells. Mol. Cell. Biol.22, 1693–1703 (2002) CASPubMedPubMed Central Google Scholar
Martinek, S., Inonog, S., Manoukian, A. S. & Young, M. W. A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell105, 769–779 (2001) CASPubMed Google Scholar
Vielhaber, E. L., Duricka, D., Ullman, K. S. & Virshup, D. M. Nuclear export of mammalian PERIOD proteins. J. Biol. Chem.276, 45921–45927 (2001) CASPubMed Google Scholar
Yagita, K. et al. Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 protein. EMBO J.21, 1301–1314 (2002) CASPubMedPubMed Central Google Scholar
McNamara, P., Seo, S.-B., Rudic, R. D., Sehgal, A., Chakravarti, D. & FitzGerald, G. A. Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: a humoral mechanism to reset a peripheral clock. Cell105, 877–889 (2001) CASPubMed Google Scholar
Rutter, J., Reick, M., Wu, L. C. W. & McKnight, S. L Regulation of CLOCK and NPAS2 DNA binding by the redox state of NAD cofactors. Science293, 510–514 (2001) CASPubMed Google Scholar
Zhang, Q., Piston, D. W. & Goodman, R. H. Regulation of corepressor function by nuclear NADH. Science295, 1895–1897 (2002) ADSCASPubMed Google Scholar
Wright, K. P. Jr & Czeisler, C. A. Absence of circadian phase resetting in response to bright light behind the knee. Science297, 571 (2002) CASPubMed Google Scholar
Lucas, R. J. et al. Identifying the photoreceptive inputs to the mammalian circadian system using transgenic and retinally degenerate mice. Behav. Brain Res.125, 97–102 (2001) CASPubMed Google Scholar
Hattar, S., Liao, H. W., Takao, M., Berson, D. M. & Yau, K. W. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science295, 1065–1070 (2002) ADSCASPubMedPubMed Central Google Scholar
Provencio, I., Rollag, M. D. & Castrucci, A. M. Photoreceptive net in the mammalian retina. Nature415, 493 (2002) ADSCASPubMed Google Scholar
Gooley, J. J., Lu, J., Chou, T. C., Scammell, T. E. & Saper, C. B. Melanopsin in cells of origin of the retinohypothalamic tract. Nature Neurosci.4, 1165 (2001) CASPubMed Google Scholar
Hannibal, J., Hindersson, P., Knudsen, S. M., Georg, B. & Fahrenkrug, J. The photopigment melanopsin is exclusively present in pituitary adenylate cyclase-activating polypeptide-containing retinal ganglion cells of the retinohypothalamic tract. J. Neurosci.22, RC191 (2002) PubMedPubMed Central Google Scholar
Berson, D. M., Dunn, F. A. & Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock. Science295, 1070–1073 (2002) ADSCASPubMed Google Scholar
Selby, C. P., Thompson, C., Schmitz, T. M., Van Gelder, R. N. & Sancar, A. Functional redundancy of cryptochromes and classical photoreceptors for nonvisual ocular photoreception in mice. Proc. Natl Acad. Sci. USA97, 14697–14702 (2000) ADSCASPubMedPubMed Central Google Scholar
Thompson, C. L. et al. Preservation of light signaling to the suprachiasmatic nucleus in vitamin A-deficient mice. Proc. Natl Acad. Sci. USA98, 11708–11713 (2001) ADSCASPubMedPubMed Central Google Scholar
Griffin, E. A., Staknis, D. & Weitz, C. J. Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science286, 768–771 (1999) CASPubMed Google Scholar
Shigeyoshi, Y. et al. Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell91, 1043–1053 (1997) CASPubMed Google Scholar
Albrecht, U., Zheng, B., Larkin, D., Sun, Z. S. & Lee, C. C. mPer1 and mPer2 are essential for normal resetting of the circadian clock. J. Biol. Rhythms16, 100–104 (2001) CASPubMed Google Scholar
Field, M. D. et al. Analysis of clock proteins in mouse SCN demonstrates phylogenetic divergence of the circadian clockwork and resetting mechanisms. Neuron251, 437–447 (2000) Google Scholar
Crosio, C., Cermakian, N., Allis, C. D. & Sassone-Corsi, P. Light induced chromatin modification in cells of the mammalian circadian clock. Nature Neurosci.3, 1241–1247 (2000) CASPubMed Google Scholar
Travnickova-Bendova, Z., Cermakian, N., Reppert, S. M. & Sassone-Corsi, P. Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK:BMAL1 activity. Proc. Natl Acad. Sci. USA99, 7728–7733 (2002) ADSCASPubMedPubMed Central Google Scholar
Shearman, L. P. & Weaver, D. R. Photic induction of Period gene expression is reduced in Clock mutant mice. NeuroReport10, 613–618 (1999) CASPubMed Google Scholar
Gau, D. et al. Phosphorylation of CREB Ser-142 regulates light-induced phase shifts of the circadian clock. Neuron34, 245–253 (2002) ADSCASPubMed Google Scholar
Pennartz, C. M. A., de Jeu, M. T. G., Bos, N. P. A., Schaap, J. & Geurtsen, A. M. S. Diurnal modulation of pacemaker potentials and calcium current in the mammalian circadian clock. Nature416, 286–290 (2002) CASPubMed Google Scholar
Kramer, A. et al. Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science294, 2511–2515 (2001) ADSCASPubMed Google Scholar
Cheng, M. Y. et al. Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature417, 405–410 (2002) ADSCASPubMed Google Scholar
Bartness, T. J., Song, C. K. & Demas, G. E. SCN efferents to peripheral tissues: implications for biological rhythms. J. Biol. Rhythms16, 196–204 (2001) CASPubMed Google Scholar
Balsalobre, A. et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science289, 2344–2347 (2000) ADSCASPubMed Google Scholar
Damiola, F. et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev.14, 2950–2961 (2000) CASPubMedPubMed Central Google Scholar
Stokkan, K. A., Yamazaki, S., Tei, H., Sakaki, Y. & Menaker, M. Entrainment of the circadian clock in the liver by feeding. Science291, 490–493 (2001) ADSCASPubMed Google Scholar
Le Minh, N., Damiloa, F., Tronche, F., Schutz, G. & Schibler, U. Glucocorticoids inhibit food-induced phase-shifting in peripheral circadian oscillators. EMBO J.20, 7128–7136 (2001) CASPubMedPubMed Central Google Scholar
Jin, X. et al. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell96, 57–68 (1999) CASPubMed Google Scholar
Ripperger, J. A. et al. CLOCK, an essential pacemaker component, controls expression of the circadian transcription factor DBP. Genes Dev.14, 679–689 (2000) CASPubMedPubMed Central Google Scholar
Lavery, D. J. et al. Circadian expression of the steroid 15 α-hydroxylase (Cyp2a4) and coumarin 7-hydroxylase (Cyp2a5) genes in mouse liver is regulated by the PAR leucine zipper transcription factor DBP. Mol. Cell. Biol.19, 6488–6499 (1999) CASPubMedPubMed Central Google Scholar
Mitsui, S., Yamaguchi, S., Matsuo, T., Ishida, Y. & Okamura, H. Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev.15, 995–1006 (2001) CASPubMedPubMed Central Google Scholar
Clayton, J. D., Kyriacou, C. P. & Reppert, S. M. Keeping time with the human genome. Nature409, 829–831 (2000) ADS Google Scholar
Grundschober, C. et al. Circadian regulation of diverse gene products revealed by mRNA expression profiling of synchronized fibroblasts. J. Biol. Chem.276, 46751–46758 (2001) CASPubMed Google Scholar
Duffield, G. E. et al. Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Curr. Biol.12, 551–557 (2002) CASPubMed Google Scholar
Kita, Y. et al. Implications of circadian gene expression in kidney, liver and the effects of fasting on pharmacogenomic studies. Pharmacogenetics12, 55–65 (2002) CASPubMed Google Scholar
Akhtar, R. A. et al. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr. Biol.12, 540–550 (2001) Google Scholar
Panda, S. et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell109, 307–320 (2002) CASPubMed Google Scholar
Storch, K. F. et al. Extensive and divergent circadian gene expression in liver and heart. Nature417, 78–83 (2002) ADSCASPubMed Google Scholar
Harmar, A. J. et al. The VPAC2 receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell109, 497–508 (2002) CASPubMed Google Scholar
Reick, M., Garcia, J. A., Dudley, C. & McKnight, S. L. NPAS2: an analog of clock operative in the mammalian forebrain. Science293, 506–509 (2001) CASPubMed Google Scholar
Liu, C. & Reppert, S. M. GABA synchronizes clock cells within the suprachiasmatic circadian clock. Neuron25, 123–128 (2000) CASPubMed Google Scholar