Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase (original) (raw)

References

  1. Petersen-Mahrt, S. K., Harris, R. S. & Neuberger, M. S. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418, 99–103 (2002)
    Article ADS CAS Google Scholar
  2. Muramatsu, M. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem. 274, 18470–18476 (1999)
    Article CAS Google Scholar
  3. Lindahl, T. Suppression of spontaneous mutagenesis in human cells by DNA base excision-repair. Mutat. Res. 462, 129–135 (2000)
    Article CAS Google Scholar
  4. Lindahl, T. An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. Proc. Natl Acad. Sci. USA 71, 3649–3653 (1974)
    Article ADS CAS Google Scholar
  5. Takata, M. et al. Chromosome instability and defective recombinational repair in knockout mutants of the five Rad51 paralogs. Mol. Cell. Biol. 21, 2858–2866 (2001)
    Article CAS Google Scholar
  6. Sale, J. E., Calandrini, D. M., Takata, M., Takeda, S. & Neuberger, M. S. Ablation of XRCC2/3 transforms immunoglobulin V gene conversion into somatic hypermutation. Nature 412, 921–926 (2001)
    Article ADS CAS Google Scholar
  7. Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993)
    Article ADS CAS Google Scholar
  8. Pearl, L. H. Structure and function in the uracil-DNA glycosylase superfamily. Mutat. Res. 460, 165–181 (2000)
    Article ADS CAS Google Scholar
  9. Nilsen, H. et al. Uracil-DNA glycosylase (UNG)-deficient mice reveal a primary role of the enzyme during DNA replication. Mol. Cell 5, 1059–1065 (2000)
    Article CAS Google Scholar
  10. Haushalter, K. A., Todd Stukenberg, M. W., Kirschner, M. W. & Verdine, G. L. Identification of a new uracil-DNA glycosylase family by expression cloning using synthetic inhibitors. Curr. Biol. 9, 174–185 (1999)
    Article CAS Google Scholar
  11. Nilsen, H. et al. Excision of deaminated cytosine from the vertebrate genome: role of the SMUG1 uracil-DNA glycosylase. EMBO J. 20, 4278–4286 (2001)
    Article CAS Google Scholar
  12. Friedberg, E. C., Ganesan, A. K. & Minton, K. N-glycosidase activity in extracts of Bacillus subtilis and its inhibition after infection with bacteriophage PBS2. J. Virol. 16, 315–321 (1975)
    CAS PubMed Google Scholar
  13. Wang, Z. & Mosbaugh, D. W. Uracil-DNA glycosylase inhibitor of bacteriophage PBS2: cloning and effects of expression of the inhibitor gene in Escherichia coli. J. Bacteriol. 170, 1082–1091 (1988)
    Article CAS Google Scholar
  14. Karran, P., Cone, R. & Friedberg, E. C. Specificity of the bacteriophage PBS2 induced inhibitor of uracil-DNA glycosylase. Biochemistry 20, 6092–6096 (1981)
    Article CAS Google Scholar
  15. Mol, C. D. et al. Crystal structure of human uracil-DNA glycosylase in complex with a protein inhibitor: protein mimicry of DNA. Cell 82, 701–708 (1995)
    Article CAS Google Scholar
  16. Handa, P., Roy, S. & Varshney, U. The role of leucine 191 of Escherichia coli uracil DNA glycosylase in the formation of a highly stable complex with the substrate mimic, Ugi, and in uracil excision from the synthetic substrates. J. Biol. Chem. 276, 17324–17331 (2001)
    Article CAS Google Scholar
  17. Radany, E. H. et al. Increased spontaneous mutation frequency in human cells expressing the phage PBS2-encoded inhibitor of uracil-DNA glycosylase. Mutat. Res. 461, 41–58 (2000)
    Article CAS Google Scholar
  18. Harris, R. S., Sale, J. E., Petersen-Mahrt, S. K. & Neuberger, M. S. AID is essential for immunoglobulin V gene conversion in a cultured B cell line. Curr. Biol. 12, 435–438 (2002)
    Article CAS Google Scholar
  19. Baba, T. W., Giroir, B. P. & Humphries, E. H. Cell lines derived from avian lymphomas exhibit two distinct phenotypes. Virology 144, 139–151 (1985)
    Article CAS Google Scholar
  20. Buerstedde, J. M. et al. Light chain gene conversion continues at high rate in an ALV-induced cell line. EMBO J. 9, 921–927 (1990)
    Article CAS Google Scholar
  21. Harris, R. S., Croom-Carter, D. S., Rickinson, A. B. & Neuberger, M. S. Epstein–Barr virus and the somatic hypermutation of immunoglobulin genes in Burkitt's lymphoma cells. J. Virol. 75, 10488–10492 (2001)
    Article CAS Google Scholar

Download references