Recruitment and regulation of phosphatidylinositol phosphate kinase type 1γ by the FERM domain of talin (original) (raw)

References

  1. De Camilli, P., Emr, S. D., McPherson, P. S. & Novick, P. Phosphoinositides as regulators in membrane traffic. Science 271, 1533–1539 (1996)
    Article ADS CAS Google Scholar
  2. Hurley, J. H. & Meyer, T. Subcellular targeting by membrane lipids. Curr. Opin. Cell Biol. 13, 146–152 (2001)
    Article CAS Google Scholar
  3. Simonsen, A., Wurmser, A. E., Emr, S. D. & Stenmark, H. The role of phosphoinositides in membrane transport. Curr. Opin. Cell Biol. 13, 485–492 (2001)
    Article CAS Google Scholar
  4. Takenawa, T. & Itoh, T. Phosphoinositides, key molecules for regulation of actin cytoskeletal organization and membrane traffic from the plasma membrane. Biochim. Biophys. Acta 1533, 190–206 (2001)
    Article CAS Google Scholar
  5. Ishihara, H. et al. Type I phosphatidylinositol-4-phosphate 5-kinases. J. Biol. Chem. 273, 8741–8748 (1998)
    Article CAS Google Scholar
  6. Wenk, M. R. et al. PIP kinase Iγ is the major PI(4,5)P(2) synthesizing enzyme at the synapse. Neuron 32, 79–88 (2001)
    Article CAS Google Scholar
  7. Critchley, D. R. Focal adhesions—the cytoskeletal connection. Curr. Opin. Cell Biol. 12, 133–139 (2000)
    Article CAS Google Scholar
  8. Martin, T. F. Phosphoinositide lipids as signaling molecules: common themes for signal transduction, cytoskeletal regulation, and membrane trafficking. Annu. Rev. Cell Dev. Biol. 14, 231–264 (1998)
    Article CAS Google Scholar
  9. Sechi, A. S. & Wehland, J. The actin cytoskeleton and plasma membrane connection: PtdIns(4,5)P(2) influences cytoskeletal protein activity at the plasma membrane. J. Cell Sci. 113, 3685–3695 (2000)
    CAS PubMed Google Scholar
  10. Cremona, O. et al. Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99, 179–188 (1999)
    Article CAS Google Scholar
  11. Anderson, R. A., Boronenkov, I. V., Doughman, S. D., Kunz, J. & Loijens, J. C. Phosphatidylinositol phosphate kinases, a multifaceted family of signaling enzymes. J. Biol. Chem. 274, 9907–9910 (1999)
    Article CAS Google Scholar
  12. McPherson, P. S. et al. A presynaptic inositol-5-phosphatase. Nature 379, 353–357 (1996)
    Article ADS CAS Google Scholar
  13. Chung, J. K. et al. Synaptojanin inhibition of phospholipase D activity by hydrolysis of phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 272, 15980–15985 (1997)
    Article CAS Google Scholar
  14. Gad, H. et al. Fission and uncoating of synaptic clathrin-coated vesicles are perturbed by disruption of interactions with the SH3 domain of endophilin. Neuron 27, 301–312 (2000)
    Article CAS Google Scholar
  15. Rees, D. J., Ades, S. E., Singer, S. J. & Hynes, R. O. Sequence and domain structure of talin. Nature 347, 685–689 (1990)
    Article ADS CAS Google Scholar
  16. Hamada, K., Shimizu, T., Matsui, T., Tsukita, S. & Hakoshima, T. Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain. EMBO J. 19, 4449–4462 (2000)
    Article CAS Google Scholar
  17. Pearson, M. A., Reczek, D., Bretscher, A. & Karplus, P. A. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell 101, 259–270 (2000)
    Article CAS Google Scholar
  18. Calderwood, D. A. et al. The phosphotyrosine binding-like domain of talin activates integrins. J. Biol. Chem. 277, 21749–21758 (2002)
    Article CAS Google Scholar
  19. Priddle, H. et al. Disruption of the talin gene compromises focal adhesion assembly in undifferentiated but not differentiated embryonic stem cells. J. Cell Biol. 142, 1121–1133 (1998)
    Article CAS Google Scholar
  20. Chavis, P. & Westbrook, G. Integrins mediate functional pre- and postsynaptic maturation at a hippocampal synapse. Nature 411, 317–321 (2001)
    Article ADS CAS Google Scholar
  21. Serra-Pages, C. et al. The LAR transmembrane protein tyrosine phosphatase and a coiled-coil LAR-interacting protein co-localize at focal adhesions. EMBO J. 14, 2827–2838 (1995)
    Article CAS Google Scholar
  22. Merilainen, J., Lehto, V. P. & Wasenius, V. M. FAP52, a novel, SH3 domain-containing focal adhesion protein. J. Biol. Chem. 272, 23278–23284 (1997)
    Article CAS Google Scholar
  23. Zhen, M. & Jin, Y. The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C elegans. Nature 401, 371–375 (1999)
    ADS CAS PubMed Google Scholar
  24. Monkley, S. J., Pritchard, C. A. & Critchley, D. R. Analysis of the mammalian talin2 gene TLN2. Biochem. Biophys. Res. Commun. 286, 880–885 (2001)
    Article CAS Google Scholar
  25. Martel, V. et al. Conformation, localization, and integrin binding of talin depend on its interaction with phosphoinositides. J. Biol. Chem. 276, 21217–21227 (2001)
    Article CAS Google Scholar
  26. McNamee, H. P., Ingber, D. E. & Schwartz, M. A. Adhesion to fibronectin stimulates inositol lipid synthesis and enhances PDGF-induced inositol lipid breakdown. J. Cell Biol. 121, 673–678 (1993)
    Article CAS Google Scholar
  27. Kunz, J. et al. The activation loop of phosphatidylinositol phosphate kinases determines signaling specificity. Mol. Cell 5, 1–11 (2000)
    Article CAS Google Scholar
  28. Tolias, K. F. et al. Type Ialpha phosphatidylinositol-4-phosphate 5-kinase mediates Rac-dependent actin assembly. Curr. Biol. 10, 153–156 (2000)
    Article CAS Google Scholar
  29. McPherson, P. S. et al. Interaction of Grb2 via its Src homology 3 domains with synaptic proteins including synapsin I. Proc. Natl Acad. Sci. USA 91, 6486–6490 (1994)
    Article ADS CAS Google Scholar
  30. Felici, F., Castagnoli, L., Musacchio, A., Jappelli, R. & Cesareni, G. Selection of antibody ligands from a large library of oligopeptides expressed on a multivalent exposition vector. J. Mol. Biol. 222, 301–310 (1991)
    Article CAS Google Scholar

Download references